Космические рубежи теории относительности
Шрифт:
Два американских физика, Альберт А. Майкельсон и Эдвард У. Морли, поставили конкретный опыт, с помощью которого можно было бы измерить скорость движения Земли относительно эфира. Схема прибора, который называется интерферометром Майкельсона, показана на рис. 2.6. Источник света испускает луч по направлению к центру прибора, где расположен делитель пучка света, позволяющий половине пучка света пройти Дальше и попасть на зеркало А, тогда как другая половина отражается под прямым углом на зеркало В. Оптические расстояния между делителем луча и обоими зеркалами должны быть с высокой точностью одинаковыми. После того как свет отразится от зеркал А и В, два получившихся луча возвращаются к центру прибора. Часть луча от зеркала В проходит через делитель
Сущность эксперимента Майкельсона-Морли в том, что если прибор будет оставаться фиксированным, то естественное вращение Земли вокруг оси будет постоянно изменять направление плеч интерферометра в течение суток. Если, например, в 6 ч утра направление к зеркалу А параллельно, а направление на зеркало B– перпендикулярно направлению движения Земли по орбите, то 6 ч спустя, в 12 ч дня, будет наблюдаться противоположная картина. Другими словами, в 6 ч утра свет идет к зеркалу А и обратно параллельно, а свет к зеркалу В– перпендикулярно потоку эфира относительно Земли. Но в полдень свет, идущий к зеркалу А и от него, будет двигаться перпендикулярно потоку эфира, тогда как свет к зеркалу В и от него будет идти параллельно этому потоку. Такое изменение ориентации плеч интерферометра должно приводить к вполне заметному сдвигу интерференционных полос, наблюдаемых в телескоп. Именно так Майкельсон и Морли надеялись обнаружить движение Земли относительно эфира.
Чтобы лучше разобраться в этом эксперименте, представим себе двух пловцов, скорости которых в неподвижной воде в точности совпадает. Организуем состязание между этими спортсменами. Местом старта пусть будет речная пристань (рис. 2.7). Пусть один пловец переплывет реку и возвратится обратно (поперек течения), а второй проплывет такое же расстояние вниз по течению и возвратится обратно (параллельно течению). Если бы течение отсутствовало, то состязание, очевидно, закончилось бы вничью. Простой расчёт, однако, показывает, что благодаря тому, что река течёт, обязательно победит первый пловец (т.е. Совершающий заплыв поперек течения). Всегда требуется меньше времени, чтобы переплыть реку туда и обратно, чем проплыть такое же расстояние вниз по течению и обратно.
РИС. 2.7. Пловцы и река. Состязание двух пловцов, имеющих одинаковую скорость в неподвижной воде. Всегда побеждает тот, кто переплывает реку поперек течения.
Точно такое же положение должно иметь место и в опыте Майкельсона-Морли. Как только свет испускается источником в интерферометре, он как бы погружается в реку эфира, текущую мимо Земли вследствие её движения по орбите. По аналогии с рассмотренным примером о двух пловцах всегда должен «побеждать» свет, распространяющийся от делителя луча до зеркала и обратно перпендикулярно направлению движения Земли по орбите, а вследствие вращения Земли вокруг своей оси каждые шесть часов «победитель» и «побежденный» будут меняться. Именно эта смена «лидера» и должна приводить к регулярному сдвигу интерференционных полос, ожидавшемуся Майкельсоном.
Опыт Майкельсона был впервые поставлен в 1880 г., и, к всеобщему удивлению, не было обнаружено сколько-нибудь заметного сдвига интерференционных полос. Отсюда следовало, что либо Земля неподвижна, либо эфира не существует, а значит, в наших представлениях о природе кроется фундаментальная ошибка.
Хотя мы подошли к проблеме о наличии в волновом уравнении постоянной величины с с экспериментальной точки зрения, отметим, что и в теории также имеется множество трудностей. Рассмотрим, к примеру, лампу-вспышку, применяемую в фотографии. Когда она срабатывает во всех направлениях начинает распространяться сферическая оболочка света. Но. согласно классической теории, сферическим его видит только тот, кто держит эту лампу (т.е. наблюдатель, покоящийся относительно источника света), а тот, кто находится в движении относительно лампы-вспышки, должен видеть эллипсоидальную оболочку света, распространяющегося от источника. Если нечто в одно и то же время является и сферическим, и несферическим, то это парадокс для привычного образа мышления.
В 1905 г. молодому немецкому физику, служившему в патентном бюро в Швейцарии, удалось сформулировать новую и абсолютно последовательную теорию о том, как нужно толковать описанный выше эксперимент. Эта теория - специальная теория относительности - была предназначена для того, чтобы устранить все трудности, связанные с постоянной с
РИС. 2.8. Камни, поезд и свеча. Согласно здравому смыслу, скорость камня (относительно Земли), брошенного человеком с крыши поезда, зависела от скорости поезда. Однако скорость света не зависит от скорости движения его источника.
Это утверждение в корне противоречит нашей интуиции и повседневному опыту. Представим себе, например, человека, сидящего на крыше поезда, движущегося со скоростью 50 км/ч (рис. 2.8). Пусть человек бросает в направлении движения поезда камень со скоростью 10 км/ч. С точки зрения наблюдателя, стоящего около железнодорожного полотна, скорость камня составит 60 км/ч (скорость поезда 50 км/ч плюс 10 км/ч составит скорость камня относительно поезда). Так подсказывает здравый смысл. Аналогично если человек на крыше поезда повернется лицом в противоположную сторону и бросит такой же камень с той же силой в направлении хвоста поезда, то для наблюдателя, стоящего у путей, камень будет лететь со скоростью 40 км/ч (скорость поезда 50 км/ч минус 10 км/ч - скорость камня относительно поезда). Это также соответствует здравому смыслу. Однако если человек на крыше поезда зажжет фонарь, то и для него, и для наблюдателя, стоящего у железнодорожного полотна, свет будет распространяться во всех направлениях с одной и той же скоростью 300 000 км/с независимо от того, с какой скоростью и в каком направлении движется поезд. Чтобы прийти к такому выводу, им обоим придется отказаться от многих своих интуитивных представлений о пространстве и времени.
РИС. 2.9. Расширяющаяся световая оболочка. В соответствии с предположением об абсолютном постоянстве скорости света наблюдатели согласятся, что они видят сферическую расширяющуюся световую оболочку. Но они не смогут прийти к согласию относительно скорости хода их часов или длины линеек.
В общих чертах специальную теорию относительности можно построить непосредственно из предположения об абсолютном постоянстве скорости света. Представим себе такой эксперимент: пусть некто включает лампу-вспышку. Для него (Андрей на рис. 2.9) свет распространяется в виде сферической оболочки с одной и той же скоростью 300000 км/с во всех направлениях. Согласно постулату Эйнштейна, для любого наблюдателя эта оболочка расширяется со скоростью 300 000 км/с. Иными словами, каждый из них (Борис, Василий и Мария на рис. 2.9) видит расширяющуюся сферическую оболочку света. Чтобы все наблюдатели независимо от того, как они движутся, видели сферическую оболочку, приходится отказаться от классических представлений о природе измерений времени и расстояний. В частности, из требования, чтобы для любых двух наблюдателей, движущихся относительно друг друга, оболочка оставалась сферической, следует, что их мерные линейки и ход часов не совпадают. Каждый будет утверждать, что часы его партнера отстают, а линейки измеряют разную длину в разных направлениях.
В основе специальной теории относительности лежит система математических соотношений, носящих название преобразований Лоренца. Эти соотношения указывают, как представляются разным наблюдателям, движущимся относительно друг друга, те или иные явления. Например, теория предсказывает, что для покоящегося наблюдателя движущиеся часы будут отставать. Этот эффект иногда называют замедлением времени. Иначе говоря, если вы будете поддерживать двухстороннюю связь с космонавтом, который с большой скоростью пролетает через Солнечную систему, то обнаружите, что все часы на борту корабля отстают по сравнению с вашими. Покоясь на Земле, вы заключите, что для движущегося космонавта время замедлилось. Такое заключение с необходимостью следует из предположения, что скорость света - абсолютная постоянная. Если и вы, и космонавт, измеряя скорость света, должны получить в точности один и тот же результат, то с вашей точки зрения часы космонавта должны отставать.
На рис. 2.10 графически изображено преобразование Лоренца для времени. В частности, этот график отвечает на вопрос, сколько длится 1 с по движущимся часам с точки зрения часов покоящихся. К примеру, если космонавт пролетает мимо вас со скоростью, равной 60% скорости света, то 1 с по его часам равна 1,2 с по вашим часам. Из этого же графика видно, что эффект замедления течения времени становится существенным лишь при субсветовых скоростях. По мере того как скорость движения часов стремится к скорости света, это замедление становится в пределе бесконечно большим, и при достижении скорости света время останавливается вообще.