Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени
Шрифт:
А теперь представьте, что вы, в конце концов, измеряете спин одного из электронов и выясняется, к примеру, что его вектор направлен вверх. Тогда вы мгновенно получаете информацию о спине второго электрона, хотя сам он находится от вас на расстоянии многих световых лет, – ведь, поскольку его спин противоположен спину его партнера, получается, что его вектор направлен вниз. Это означает, что наблюдение, проведенное в одной части Вселенной, мгновенно определяет состояние электрона на другом ее конце, что, на первый взгляд, противоречит общей теории относительности. Эйнштейн назвал это «призрачным дальнодействием». Философские следствия из этого мысленного эксперимента поражают воображение. Сказанное означает, что некоторые атомы в нашем теле могут быть связаны с невидимой сетью атомов на другом конце Вселенной, так что движения нашего тела могут мгновенно влиять на состояние атомов за миллиарды световых лет от нас, порождая кажущееся нарушение законов общей теории относительности.
Услышав об этом новом аргументе против квантовой механики, Шрёдингер написал Эйнштейну: «Я был счастлив, что в той работе… вы, очевидно, ухватили догматичную квантовую механику за хвост». Узнав о новой статье Эйнштейна, коллега Бора Леон Розенфельд написал: «Мы бросили все; необходимо было как можно быстрее разъяснить подобное недоразумение. Бор, в сильном возбуждении, сразу же начал диктовать черновик ответной статьи».
Копенгагенская школа выдержала эту атаку, но победа далась большой ценой: Бору пришлось согласиться с Эйнштейном в том, что квантовая Вселенная действительно нелокальна (то есть события в одной части Вселенной могут мгновенно влиять на другую ее часть). Все в этой Вселенной каким-то образом «запутано» в какой-то космический клубок. Так что мысленный эксперимент, или ЭПР– парадокс, не опроверг квантовую механику; он лишь продемонстрировал, насколько она на самом деле умопомрачительна. (С годами этот мысленный эксперимент оброс десятками неверных интерпретаций и рассуждений о том, что можно на его основе то ли построить сверхсветовое радио, то ли послать сигнал в прошлое, то ли овладеть телепатией.)
Однако ЭПР-эксперимент не отрицает относительность. В этом смысле Эйнштейн смеялся последним. Невозможно при помощи этого эффекта передать какую бы то ни было полезную информацию быстрее, чем со скоростью света. Так, невозможно передавать при помощи аппарата ЭПР морзянку быстрее света. Физик Джон Белл воспользовался этим примером для объяснения сути проблемы. Он описал математика по имени Бертлманн, всегда носившего один розовый и один зеленый носок. Достаточно знать, что на одной из его ног надет зеленый носок, чтобы мгновенно понять, какого цвета носок надет на второй ноге. Тем не менее от одной ноги к другой не передавалось никаких сигналов. Иными словами, знать что-то – совсем не то же самое, что передать эту информацию. Существует принципиальная разница между обладанием информацией и ее передачей.
К концу 1920-х гг. в физике возвышались две сравнимые вершины: теория относительности и квантовая теория. Вся сумма человеческих знаний о физической Вселенной укладывалась в две эти теории. Одна из них – теория относительности – рассказывала нам об очень крупных объектах; это была теория Большого взрыва и черных дыр. Другая – квантовая теория – вещала об очень малых объектах и освещала для нас странный мир атома. Хотя квантовая теория строилась на парадоксальных идеях, никто не мог оспаривать ее поразительных экспериментальных успехов. Нобелевские премии сыпались как с куста на молодых физиков, готовых исследовать приложения квантовой теории.
Эйнштейн был слишком опытным физиком, чтобы не обращать внимания на важные открытия, происходившие в квантовой теории чуть ли не ежедневно. Он не оспаривал ее экспериментальных успехов. Квантовая механика была «самой успешной физической теорией нашего времени», признавал он. Кроме того, он не пытался помешать ее развитию, как мог бы поступить физик меньшего масштаба. (В 1929 г. Эйнштейн рекомендовал разделить Нобелевскую премию между Шрёдингером и Гейзенбергом.) Вместо этого он изменил стратегию. Он перестал нападать на квантовую теорию и разоблачать ее как ошибочную. Его новая стратегия состояла в том, чтобы включить квантовую теорию целиком в состав его единой теории поля. Когда армия критиков из лагеря Бора обвинила его в том, что он игнорирует квантовый мир, он в ответ заявил, что преследует космическую по масштабу цель: чтобы его новая теория поглотила квантовую теорию целиком, во всей ее полноте. Эйнштейн привел при этом аналогию из собственного опыта. Теория относительности не доказала, что теория Ньютона полностью неверна; она всего лишь показала, что эта теория неполна и может быть включена в другую, более масштабную теорию. Так, ньютонова механика вполне действенна в своей собственной конкретной области: в царстве малых скоростей и крупных объектов. Аналогично, считал Эйнштейн, и причудливые утверждения квантовой теории о котах, которые одновременно и живы, и мертвы, могут найти объяснение в теории более высокого порядка. В этом отношении легионы биографов Эйнштейна просмотрели самую суть. Целью Эйнштейна было не опровержение квантовой теории, как утверждали многие критики ученого. Его слишком часто изображали этаким последним динозавром классической физики, стареющим бунтарем, превратившимся, неожиданно для себя, в рупор реакции. Подлинной целью Эйнштейна было обнажить неполноту квантовой
Стратегией Эйнштейна было воспользоваться общей теорией относительности и своей единой теорией поля, чтобы объяснить происхождение материи, построить материю из геометрии. В 1935 г. Эйнштейн и Натан Розен исследовали новый способ, посредством которого квантовые частицы, такие как электрон, возникали естественным образом скорее как следствия его теории, чем как фундаментальные объекты. Этим способом он надеялся вывести квантовую теорию, не столкнувшись ни разу с проблемой вероятностей и случайностей. В большинстве теорий элементарные частицы появляются как сингулярности, то есть области, где уравнения не работают. Вспомните, к примеру, уравнения Ньютона, где сила обратно пропорциональна квадрату расстояния между двумя объектами. Когда это расстояние уменьшается до нуля, сила тяжести уходит в бесконечность, образуя сингулярность. Поскольку Эйнштейн хотел вывести квантовую теорию из более глубокой теории, ему нужна была, как он считал, теория, совершенно свободная от сингулярностей. (Такие примеры есть в простых квантовых теориях. Они называются солитонами и напоминают изгибы пространства; то есть они гладкие, не сингулярные и способны отскакивать друг от друга и при этом сохранять форму.)
Эйнштейн и Розен предложили новаторский метод получения такого решения. Они начали с двух шварцшильдовских черных дыр, определенных на двух параллельных листах бумаги. При помощи ножниц можно вырезать сингулярности той и другой черных дыр, а затем вновь склеить листы. При этом получится гладкое, лишенное сингулярностей решение, которое, по мнению Эйнштейна, может представлять некую элементарную частицу. Таким образом, квантовые частицы можно рассматривать как крохотные черные дыры. (Надо сказать, что эта идея ожила через 60 лет в теории струн, где имеются математические отношения, способные превращать элементарные частицы в черные дыры, и наоборот.)
Однако этот «мост Эйнштейна – Розена» можно рассматривать и иначе. Это, собственно, первое упоминание в научной литературе так называемой кротовой норы, соединяющей две вселенные. Кротовые норы – короткий путь сквозь пространство и время, похожий на врата, или портал, соединяющие два параллельных листа бумаги. Концепцию кротовых нор предложил публике Чарльз Доджсон (более известный как Льюис Кэрролл), оксфордский математик и автор книг «Алиса в Стране чудес» и «Алиса в Зазеркалье», которые его и прославили. Проходя сквозь зеркало, Алиса, по существу, проходит по своего рода мосту Эйнштейна – Розена, соединяющему две вселенные – странный мир Страны чудес и обычные окрестности Оксфорда. Было понятно, разумеется, что всякий, кто пролетит сквозь мост Эйнштейна – Розена, будет раздавлен сильнейшим гравитационным полем, достаточно мощным, чтобы разорвать любой объект на атомы. Прохождение через кротовую нору в параллельную вселенную невозможно, если черная дыра стационарна. (Пройдет еще 60 лет, прежде чем концепция кротовых нор выйдет на ключевую позицию в физике.)
Со временем Эйнштейн отказался от этой идеи, отчасти потому, что был не в состоянии объяснить богатство субатомного мира. Он не мог также полностью объяснить все необычные свойства «дерева» в терминах «мрамора». У элементарных частиц было попросту слишком много свойств (среди них, к примеру, масса, спин, заряд, квантовые числа и т. д.), которые не спешили выводиться из его уравнений. Его целью было найти картину, которая явила бы единую теорию поля во всем ее блеске и величии, но этому мешало одно принципиальное препятствие: в то время слишком мало было известно о свойствах ядерного взаимодействия. Эйнштейн проработал не один десяток лет, прежде чем данные, полученные при помощи мощных ускорителей атомных частиц, помогли разобраться в природе субатомной материи. Но законченная картина так и не возникла.
Глава 8
Война, мир и E = mc^2
В 1930-е г, когда мир находился в тисках Великой депрессии, на улицах Германии вновь воцарился хаос. Обрушение национальной валюты в единый миг обесценило накопления трудолюбивых представителей среднего класса. Набирающая силу нацистская партия, питаемая страданиями и обидами немецкого народа, направляла гнев простых людей на самый удобный объект – евреев. Вскоре эта партия при поддержке могущественных промышленников стала самой влиятельной в рейхстаге. Эйнштейн, много лет боровшийся с антисемитизмом, понял, что на этот раз под угрозой оказывается сама жизнь. Принципиальный пацифист, он тем не менее был реалистом и умел пересматривать свои взгляды под влиянием объективной реальности, в роли которой на этот раз выступил стремительный подъем нацистской партии. «Это означает, что я против применения силы в любых обстоятельствах, кроме столкновения с врагом, конечной целью которого является уничтожение жизни», – писал он. Его взглядам предстояло столкнуться с серьезными испытаниями.