Чтение онлайн

на главную

Жанры

Краткая история биологии. От алхимии до генетики
Шрифт:

Но какова структура гораздо более сложных молекул, встречающихся в природе? Какова точная численность каждого типа аминокислот в- данной протеиновой молекуле? Прямого ответа на этот вопрос не последовало, поскольку для него предстояло разбить молекулу протеина на смесь индивидуальных аминокислот и определить относительные количества каждого компонента методами химического анализа.

Для времени, в котором жил Фишер, это было невыполнимо. Некоторые из аминокислот достаточно схожи по структуре между собой, а методы не были столь тонкими, чтобы определить их избирательно.

Ответ на проблему пришел с методикой, впервые увидевшей свет в 1906 г. и основанной на трудах русского ботаника

Михаила Цвета (1872 — 1919). Он работал с растительными пигментами и нашел способ отделять один от другого нехимически. Ему пришло в голову дать смеси стекать по трубке, опудренной окисью алюминия. Разные субстанции в смеси пигментов прилипали к частицам порошка с различной силой. По мере промывания смеси свежим растворителем компоненты разделялись, осаждаясь; те, которые притягивались с меньшей силой, промылись вниз первыми; в конце концов смесь была разделена на компоненты, каждый со своим оттенком. Ответ был как бы «написан цветом», поэтому автор назвал методику греческим термином «хроматография» (буквально: «написано цветом»),

Работа Цвета в то время не вызвала интереса, но в 1920-х годах Вилштеер сделал методику популярной. Хроматография стала широко использоваться для разделения смесей.

Необходимая модификация к методике Цвета пришла в 1944 г. и совершила буквально революцию в биохимии. Английские биохимики Арчер Джон Портер Мартин (род. 1910) и Ричард Лоуренс Миллингтон Синг (1914—1994) разработали методику хроматографии на простой фильтровальной бумаге.

Капля смеси аминокислот стекала до конца бумажной полоски, а затем по полоске способом капилляров поднимался специальный растворитель. По мере того как растворитель смачивал высохшие следы смеси, аминокислоты по очереди «поднимались» по бумажной полоске, каждая со своей скоростью. Их положение на полоске определялось наиболее подходящим химическим или физическим методом. Количественный анализ содержания аминокислот можно было провести без особого труда.

Бумажная хроматография завоевала немедленную популярность. Без дорогостоящего оборудования, просто и быстро она позволяла точно разделять сложнейшие смеси. Методика стала приложимой к любой ветви биохимии: в частности, к фотосинтезу по Калвину.

В особенности хроматография позволила определять точные количества аминокислот в молекуле данного протеина, будто то была простая молекула обычного вещества.

Пространственная структура протеина

Но этого было недостаточно. Химиков интересовало не просто число аминокислот в молекуле протеина, но их последовательность. Число вероятных последовательностей — астрономическое; а, например, в средней по сложности молекуле гемоглобина число разных аминокислот — 500. Число вероятностей положения здесь выражается шестизначной цифрой.

Но и тут пришла на помощь бумажная хроматография. Работая с инсулином, состоящим из 50 аминокислот, английский биохимик Фредерик Сенгер (род. 1918) восемь лет разрабатывал специфичный метод. Он разбил молекулу инсулина, оставив нетронутыми короткие цепочки аминокислот. Их он разделил хроматографически и идентифицировал как их состав, так и порядок соединения. Медленно, но верно Сенгер соединял короткие цепи в более длинные. К 1953 г. был установлен точный порядок аминокислот в молекуле инсулина.

Ценность методики продемонстрировал американский биохимик Винсент дю Виньо (род. 1901). Он применил методику к простой молекуле окситоцина, гормону с восемью аминокислотами в составе. Это было проделано в 1954 г., и полученный синтетический окситоцин по свойствам в точности повторял натуральный.

В 1960 г. была разработана молекула рибонуклеазы

с точной последовательностью аминокислот в этом энзиме. На этот раз молекула состояла из 124 аминокислот. Более того, фрагменты молекулы рибонуклеазы могли быть синтезированы отдельно и показали энзиматическую активность. К 1963 г. было обнаружено, что аминокислоты под номерами 12 и 13 (гистидин и метионин) были существенны для энзиматической активности. Это был шаг навстречу точному анализу функций компонентов сложных молекул.

Так была «приручена» молекула протеина.

Глава 14

Молекулярная биология. нуклеиновые кислоты

Вирусы и гены

Как только молекулы протеина вошли под контроль науки, неожиданно обнаружилось, что на роль первородных кирпичиков жизни претендуют совсем иные, нежели предполагали ученые, структуры. Эти структуры вышли на авансцену при исследовании вопроса фильтрующихся вирусов.

Природа вирусов оставалась загадкой для многих поколений. Известно, что они вызывают заболевания, поэтому были разработаны методы противостояния вирусам; однако сам факт, а не его эффекты оставался неизвестным. Как только были разработаны достаточно тонкие фильтры для удержания вирусов, удалось оценить частицы вирусов: чем бы они ни были, даже принимая во внимание тот факт, что они мельче, чем самые мелкие из известных в природе клеток, они все равно больше, чем самые крупные из молекул протеинов. Итак, было решено, что вирусы — это структуры, промежуточные между клетками и молекулами.

Электронный микроскоп открыл их для нас как объекты, которые можно рассмотреть и оценить. Они бывают самых разных размеров: от крошечных точек не более чем большая молекула протеина до структур с регулярными геометрическими формами и очевидной внутренней организацией. Бактериофаги занимают нишу среди самых крупных вирусов. Микроорганизмы, именуемые рикеттсиями (по имени исследователя Рикеттса), крупнее вирусов размером и все же меньше самых малых бактерий.

В свое время стоял вопрос о том, являются ли эти организмы, заполняющие нишу между самыми мелкими из клеточных структур и самыми крупными из молекулярных, живой частью природы или неживой. В 1935 г. была выдвинута потрясающая гипотеза. Американскому биохимику Уэнделлу Мередиту Стенли при работе с экстрактом вируса табачной мозаики удалось получить крошечные игольчатые кристаллы. Они, будучи изолированными, обладали всеми инфекционными свойствами вируса, только в более высокой концентрации. Другими словами, был получен вирусный кристалл — либо кристаллический вирус, — что одинаково трудно было принять.

Вирус, гораздо более мелкий, чем клетки, не обладал способностью к независимой жизни. Однако вирус может проникать внутрь клетки и воспроизводить самого себя как живое существо.

Не существует ли в самой клетке некоего субклеточного компонента, который составил бы сущность жизни? Быть может, вирус гораздо более мелок, чем клетка, ввиду того, что когда-то он составлял часть клетки?

Если так оно и есть, то, какие субклеточные компоненты должны быть локализованы в нормальных клетках? На эту роль претендуют хромосомы. В первые годы XX в. стало очевидным, что хромосомы несут факторы, отвечающие за физические характеристики. Однако хромосомы гораздо больше по размерам, нежели вирусы.

Поделиться:
Популярные книги

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Измена. Право на обман

Арская Арина
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на обман

Темный Лекарь 6

Токсик Саша
6. Темный Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 6

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4