Краткий курс логики: Искусство правильного мышления
Шрифт:
15. Вор нижние концы верёвок связал вместе. По одной из них он полез к потолку, обрезал вторую верёвку на расстоянии примерно 30 см от потолка и позволил ей упасть вниз. Из оставшегося висеть куска второй верёвки он связал петлю. Затем, ухватившись за петлю, он перерезал первую верёвку и просунул её в петлю. После этого он спустился по двойной верёвке вниз и вытащил верёвку из петли.
16. Если таксист глух, как он понял, куда везти девушку? И ещё: как он тогда понял, что она вообще что-то говорит?
17. Вода никогда не достигнет иллюминатора, потому что лайнер поднимается вместе с водой.
18. Он рассуждал так: «Каждый из нас может думать,
19. Нужно сдвинуть верхнюю спичку, образовав крохотный квадрат в центре фигуры.
20. Точка на тропинке, которую путешественник проходит в одно и то же время суток, как во время подъёма, так и во время спуска, существует (A). В этом легко убедиться с помощью следующей схемы:
Ось x – это время суток, а ось у – это высота подъёма. Кривые линии – это, соответственно, графики подъёма и спуска. Точка их пересечения – как раз та самая, которую проходит путешественник в одно и то же время суток и на подъёме, и на спуске.
21. Статуи надо расположить следующим образом:
22.
23. Обмен выгоден математику и невыгоден торговцу, так как количество денег, которые выплачивает торговец математику, пусть даже ничтожно малое вначале, увеличивается в геометрической прогрессии, а деньги, которые платит математик торговцу, увеличиваются в арифметической прогрессии. Через 30 дней математик отдаст торговцу около 50 000 р., а торговец будет должен математику более 5 000 000 р.
24. Новый год и раньше (т. е. по старому стилю) встречали 1 января.
Однако старое 1 января (старый Новый год) сейчас, т. е. по новому стилю, попадает на 14 января, поэтому никакого противоречия и недоразумения здесь нет. В условии задачи создаётся видимость противоречия за счёт того, что в одних и тех же словах смешиваются различные понятия: Новый год по новому стилю и Новый год по старому стилю. И действительно, Новый год по новому стилю в старом стиле приходился бы на 19 декабря, а Новый год по старому стилю в новом стиле приходится на 14 января.
25.
26.
27. Человек, который стоит слева, будь он Правдолюбом, на вопрос: «Кто стоит рядом с тобой?» не мог бы ответить то, что ответил – «Правдолюб». Значит, слева не Правдолюб.
Но Правдолюб и не в центре, так как, будучи Правдолюбом, на поставленный вопрос «Кто ты?» он не мог бы ответить так, как ответил – «Дипломат».
Значит,
28. Последовательность переливаний представлена в следующей табл. 9, где I – ведро, объёмом 10 л; II – ведро, объёмом 7 л; III – ведро, объёмом 3 л:
Таким образом, разделить 10 л вина пополам, используя пустые вёдра по 7 л и 3 л, можно с помощью 10 переливаний.
29. Катя придёт к поезду первой, а Андрей, скорее всего, опоздает на поезд, так как он придёт на вокзал к тому времени, когда на его часах будет 8 ч 05 мин. А на самом деле, ещё на 10 мин больше – 8 ч 15 мин. Катя постарается прийти по своим часам к 7 ч 50 мин, а на самом деле это будет 7 ч 45 мин.
30. Для решения этой задачи надо составить уравнение. Но сначала на основе запутанного ответа динозавра следует построить следующую схему (возраст черепахи в прошлом примем за x):
Итак, на схеме видим, что сейчас динозавру действительно в 10 раз больше лет, чем было черепахе тогда, когда динозавру было столько лет, сколько черепахе сейчас. Поскольку разница в возрасте и в прошлом, и в настоящем остаётся одинаковой, составим уравнение:
Преобразуем:
110 – x = 10 x – 110,
110 + 110 = 10 x + x,
220 = 11 x,
x = 220 : 11 = 20.
Следовательно, черепахе в прошлом было 20 лет, динозавру сейчас в 10 раз больше.
Ответ: динозавру 200 лет.
31. Сумма диаметров малых полуокружностей: (AC) + (CD) + (DB), равна диаметру большой полуокружности: AB, но ввиду того, что длина полуокружности равна половине произведения числа «пи» на диаметр, пройденные автомобилями расстояния будут совершенно одинаковыми. Следовательно, отставание милицейского автомобиля от угонщика не уменьшится, и погоня на этом участке не увенчается успехом.
32. Для решения этой задачи надо составить простую схему (обозначим нынешний возраст Кати как x):
Из схемы следует, что самая старшая – Катя, далее следуют по возрасту Оля и Настя.
33. Все правдивые верно утверждали, что всё написанное – правда, но и все лжецы ложно утверждали, что всё написанное ими – правда. Таким образом, все 35 сочинений оказались с утверждением о правдивости написанного.
34. У каждого человека 2 родителя, 4 бабушки и дедушки, 8 прабабушек и прадедушек, 16 прапрабабушек и прапрадедушек. Чтобы узнать, сколько было прапрабабушек и прапрадедушек у всех прапрабабушек и прапрадедушек каждого из нас, надо: 16 · 16 = 256. Этот результат получается, конечно же, если исключить случаи кровосмешения, т. е. браки между различными родственниками.