Кризис европейских наук и трансцендентальная феноменология
Шрифт:
6) Основная идея галилеевской физики: природа как математический Универсум
Относительно высокий уровень геометрии, взятой, согласно Галилею, уже не только в земном, но и в более широком, даже астрономическом, приложении, был для Галилея тем традиционным способом мысли, который позволил соотнести эмпирию и предельные математические идеи. Для него эта традиция была столь же естественна, как и традиция геодезии, интенция которой ко все большей точности измерения и ко все более объективному определению самих форм была задана уже геометрией. Если бы эмпирическая, весьма узкая постановка задач, обусловленных технической практикой, с самого начала была движущей силой выдвижения задач перед чистой геометрией, то чистая геометрия давно бы уже стала "прикладной" геометрией, средством для развития техники, средством построения ее концепций и реализации ее задач, прежде всего задачи систематического развертывания методов измерения для объективного определения форм, достигаемого лишь в постоянной "аппроксимации"
Итак, Галилей, не сознавая этого, поставил вопрос о том, как же возникает исходная идеализирующая процедура (как она возникает на базе догеометрического, чувственного мира и присущих ему практических искусств). Он попытался углубить его до вопроса о том, каково происхождение аподиктической математической очевидности. При геометрической установке потребность в обсуждении этих вопросов и не возникает: тот, кто изучает геометрию, тот должен "понять" геометрические понятия и принципы, должен быть знаком с операциями как с методами обращения специфически определяемых форм, причем должен найти применение соответствующим фигурам, начертанным на бумаге ("моделям"). То, что для геометрии, понятой как отрасль универсального знания о сущем (философии), было бы релевантным и весьма значительным, - все это было чуждо Галилею; обсуждение проблемы геометрической очевидности, того, "как" она возникла, ему было чуждо. Темой наших дальнейших исторических исследований, начиная с физики Галилея, и будет то, каким же образом произошел этот столь важный сдвиг в точках зрения и почему проблема "генезиса" познания стала позднее главной.
Здесь мы хотим отметить, что именно геометрия, с присущей ей наивной априорной очевидностью, которая оказывается движущей силой любой нормальной геометрической деятельности, определила мышление Галилея и привела его к выдвижению идеи физики, ставшей делом всей его жизни. Так, исходя из практического понимания пути, которым геометрия содействует однозначному определению чувственного мира, ставшего традицией, Галилей заявляет: там, где такая методика создана, мы можем преодолеть относительность субъективных взглядов, существенных лишь для эмпирически созерцаемого мира. На этом пути мы открываем тождественную, безотносительную истину, в которой каждый может убедиться, каждый, кто в состоянии понять и применять эти методы. Следовательно, здесь мы постигаем истинно сущее, правда, в форме эмпирически данного сущего, которое все более и более приближается к геометрически идеальной форме, действующей как руководящая сила.
Между тем вся чистая математика имеет дело лишь с абстракциями тел и физического мира, а именно только с абстрактными формами, существующими в пространстве-времени и тем самым с абстрактными формами как с "чистыми", "идеальными", предельными формами. Они становятся конкретными для нас в эмпирически чувственном созерцании, где действительные и возможные эмпирические формы даны просто как "формы" некоей материи в своей чувственной наполненности, как то, что обычно называли "специфическими" чувственными качествами1 (цвет, звук, запах и т.п.) и как те качества, которые выразимы в количественных различиях.
Конкретность чувственно воспринимаемых тел, их бытия в действительном и возможном опыте связана с их изменчивостью. Изменение их места в пространстве и времени, их формы и полноты свойств отнюдь не произвольны или случайны, но в своих чувственно-типологических способах проявления эмпирически зависимы друг от друга. Подобная соотнесенность изменений тел друг с другом является уже моментом повседневного опыта; она позволяет воспринять в опыте связность симуль-танно и сукцессивно сосуществующих тел. Иначе говоря, связует друг с другом их бытие и так-бытие (Sosein). Нередко, но отнюдь не всегда, компоненты этих реально-каузальных связей в опыте явно противопо
1 Постоянное отождествление чувственных качеств тел, реально воспринимаемых в опыте, нашего повседневно созерцаемого мира, таких, как цвет, осязаемость, запах, теплота, тяжесть и т.д., с самими телами, как с их свойствами, с чувственно данными, - все это дурное наследие той психологической традиции, которая берет свое начало с Локка. "Данные ощущений" также называют чувственными качествами и вообще не отличают от них. Там же, где начинают проводить различие (не описывая, что весьма необходимо, его подробно) важную роль играет то заблуждение (о нем мы еще будем говорить в дальнейшем), что "данные ощущений" непосредственны. С этим же связано и отождествление тел с физико-математическими телами, смысловые истоки которого мы должны исследовать. Здесь мы говорим, оставаясь на почве действительного опыта, о качествах, свойствах тел, действительно воспринимаемых нами. И если мы говорим о них как о полноте всех форм, то мы рассматриваем эти формы как "качества" самих тел, причем как чувственно воспринимаемые, т.е. как то, что дано не в соотнесенности с определенными органами чувств, подобно (XlOVYfCO, KOIVCC, а есть ШОУГ]ГО, 101.0..
ставляются. Там же, где этого не происходит и возникает нечто совершенно новое, мы задаемся вопросом "Почему оно возникло?" и рассматриваем его в определенных условиях места и времени. Вещи чувственно воспринимаемого мира (всегда воспринимаемые так, как они воспринимаются в нашей повседневной жизни и оцениваемые
Этот универсально каузальный подход к созерцаемому миру позволяет выдвигать гипотезы, индуктивные заключения, предвидения относительно того, что неизвестно в настоящем, прошлом и будущем. Но в донаучном познании жизни мы сталкиваемся с чем-то приблизительным, с типическим. Как же возможна "философия", научное познание мира, если неопределенное осознание тотальности имеет свои истоки, в которых мир осознается как горизонт при любой смене сиюминутных интересов и познавательных тем? Конечно, как уже было сказано, в своей рефлексии мы можем тематизировать целостность мира и постичь ее каузальным образом. При этом, правда, мы приходим лишь к очевидности пустой абстракции: все воспринимаемые события независимо от места и времени определены каузально. В каком же отношении находится она к наличной каузальности мира, которая будучи определенной сетью каузальных связей, делает конкретными все реальные события независимо от времени? "Философское", подлинное научное познание мира лишь тогда имеет смысл и лишь тогда возможно, когда открыты методы, которые позволяют конструировать систематически и заранее бесконечность его каузальных связей от самых неустойчивых, данных в непосредственном опыте, до относительно устойчивых. И эта конструкция при всей ее бесконечности должна быть доказательной. Как же это мыслимо?
Здесь наставницей нам служит математика. Она уже указала нам путь относительно пространственно-временных форм двояким образом. Во-первых, она создала идеальную объективность с помощью идеализации физического мира и его пространственно-временной оформленности. Из неопределенных, всеобщих форм пространства и времени, присущих жизненному миру, из свойственных ему эмпирически созерцаемых форм она создала объективный мир в подлинном смысле слова, а именно бесконечную тотальность идеальных предметностей, определяемых методически и всегда и для любого человека однозначно. Тем самым она впервые показала, что бесконечность предметов, субъективно-релятивных и данных лишь в неопределенных, всеобщих представлениях, объективно определяема лишь благодаря априорному всеохватывающему методу и мыслима как действительно определенная сама по себе. Точнее говоря, определяемая как существующая сама по себе и в своих предметах, и в их свойствах, и в своих отношениях. Говоря "мыслима", я имею в виду, что бесконечность конструируема ex datis в своем объективно истинном бытии-самом-по-себе с помощью не просто постулируемого, но действительно созданного, аподиктически воспроизводимого метода.
Во-вторых, математика, вступающая в контакт с искусством измерения и руководящая им, нисходя от мира идеальных сущностей (Idealitat) к эмпирически созерцаемому миру, показывает, что может быть достигнут универсальный, действительно созерцаемый мир 6 самих вещах, хотя она, будучи математикой форм, и проявляет интерес лишь к одной его стороне (правда, необходимым образом присутствующей во всех вещах), все же в состоянии достичь объективно реального познания совершенно нового рода, а именно аппроксимативно приближающегося к миру ее собственных идеальных сущностей. Вещи эмпирически созерцаемого мира в соответствии с образом действия мира (Weltstil) обладают телесностью и суть "res extensae", воспринимаются в своих изменчивых связях и, будучи рассмотрены как целое, представляют собой совокупность, где каждое отдельное тело занимает свое относительное место и т.д. С помощью чистой математики и практического искусства измерения можно построить для всего физического мира совершенно новое индуктивное предсказание, а именно на основе уже данных и измеренных характеристик форм "рассчитать" неизбежные характеристики, еще неизвестные и недоступные для непосредственного измерения. Так идеальная геометрия, отчужденная от мира, становится "прикладной" и вместе с тем в известном смысле всеобщим методом познания реальности.