Чтение онлайн

на главную - закладки

Жанры

Шрифт:
Когда защищать диссертацию?

Отвлечемся немного от лазеров к другой проблеме, имеющей, впрочем, непосредственное отношение к науке. Спросим себя, когда ученый должен защищать диссертацию. Скажем, кандидатскую диссертацию. Принято считать, что он должен сделать это после того, как выполнит несколько исследований, бесспорно лежащих на уровне кандидатских работ.

Никто из знавших Летохова только по публикациям не мог предположить, что он, опубликовавший за четыре года более полусотни работ, не имеет кандидатской степени. И когда в конце 1969 года он под нажимом товарищей представил наконец кандидатскую диссертацию, ученый совет, присудив ему степень кандидата, рекомендовал представить эту же работу вторично на соискание степени доктора наук. Но Летохов не пошел по легкому пути. Он предпочел написать новую диссертацию и весной 1970 года блестяще защитил ее. В его

диссертации речь шла и о сжатии лазерного импульса при усилении, и о сверхсветовом движении. Но вернемся на несколько лет назад.

Сейчас каждый школьник знает, что скорость света — высший предел скорости. Парадоксы, связанные с этим фундаментальным законом, встречаются все реже. И вот, солидные ученые предсказывают сверхсветовую скорость. А затем вместе с другими сотрудниками лаборатории квантовой радиофизики они получают как сверхсветовую скорость движения гребня импульса, так и дальнейшее сокращение длительности гигантского импульса.

Теория Басова и Летохова учитывает немаловажную деталь, которая выпадала из поля зрения предыдущих теорий: как ни быстро развивается генерация гигантского импульса, он не возникает мгновенно. На экране скоростного осциллографа можно видеть, что передний фронт гигантского импульса совсем не напоминает ступеньку, а плавно нарастает, причем медленнее, чем время, в течение которого протекают важнейшие процессы в усиливающей среде. В результате отдельные активные частицы взаимодействуют с усиливаемым импульсом не когерентно — независимо одна от другой.

Преимущественное усиление пологой головной части импульса приводит к постепенному перемещению гребня импульса вперед по переднему фронту так, что максимум импульса не бежит вместе с гребнем какой-либо определенной волны, а постоянно передается от задней волны к передней. Нечто подобное можно было бы увидеть, если бы колонна демонстрантов, не прекращая движения, передавала бы транспарант от задних рядов в передние. Здесь нет ничего противоречащего законам природы, в частности — невозможности перемещения материальных тел со скоростями, превышающими скорость света. В этом опыте со сверхсветовой скоростью движется не какое-либо тело или порция энергии, а лишь зона, в которой наиболее интенсивно происходит превращение энергии, запасенной в активных частях, в другую форму, в форму фотонов световой волны. Теория Басова и Летохова не только предсказала возможность движения гребня гигантского импульса со скоростью, в несколько раз превышающей скорость света, но и объяснила, почему при этом не происходит сокращения длительности импульса.

Успех

Причиной является именно то, что гигантский импульс возникает не скачком, а развивается хоть и быстро, но постепенно от очень малых энергий. Слабые участки переднего фронта, простирающиеся далеко впереди его гребня, эффективно усиливаются, пробегая по наиболее «богатым», еще не затронутым главной частью импульса, частям усилителя. Будучи слабыми, они усиливаются без искажения, так что перед наблюдателем возникают все новые и новые участки переднего фронта, первоначально замаскированные шумами. В результате импульс возрастает, лишь незначительно деформируясь, как морская волна, приближающаяся к берегу по мелководью. Морская волна опрокидывается, набегая на берег. Можно заметить, как перед опрокидыванием ее передний фронт становится все более крутым. Гребень настигает его. Катастрофа возникает именно потому, что первыми выбегают на берег и разрушаются самые слабые передние волны. Нечто подобное необходимо и для сжатия лазерного импульса. Басов и Летохов установили, что для сжатия импульса в процессе усиления нужно отсечь слабые участки его переднего фронта, чтобы они не истощали активного вещества перед приходом гребня. Нужно с самого начала придать переднему фронту импульса форму, напоминающую ступеньку. Тогда именно передняя часть ступеньки будет отсасывать всю энергию, запасенную в усилителе. Гребень будет расти, последующие части импульса — ослабевать, как это предсказывал еще Сковелл, и сокращение импульса станет реальностью.

Для проверки теории Басов с сотрудниками установили между усилителем и лазером, дающим гигантский импульс, дополнительный затвор. Специальная схема чрезвычайно быстро открывала его только после того, как гигантский импульс достигал своего максимума. Поэтому перед гребнем гигантского импульса в усилитель не поступало никакого света. Зато гребень гигантского импульса имел возможность извлекать из активного материала всю запасенную в нем энергию. Затвор действовал так быстро, что передний фронт импульса на входе усилителя напоминал крутую ступень. И действительно, вся энергия, скопленная в усилителе, выплескивалась на гребень импульса. Измерения показали, что длительность импульса на выходе усилителя уменьшалась в несколько раз. Только за счет сокращения настолько же возрастала и мощность импульса. В действительности мощность увеличивалась еще быстрее, ибо импульс сильно возрастал за счет энергии усилителя.

Теперь

во всех лабораториях, имеющих дело с гигантскими импульсами лазеров, сочетающих большую мощность с большой энергией, между лазером и усилителем включают дополнительный затвор, придающий переднему фронту импульса форму ступеньки. Об опытах со сверхсветовым движением лазерных импульсов теперь можно прочитать лишь в старых журналах и в учебниках по квантовой электронике. Такова судьба многих парадоксов. Они стимулируют ум, обостряют внимание и интерес и, сыграв свою роль, попадают в основные фонды прогресса, в тот отдел, где столь же почетное место занимают прялка и каменный топор. А менее эффектные результаты зачастую продолжают и в наши дни служить человеку. Так случилось и с этой работой советских ученых, для которых одинаково важны и фундаментальные исследования, и практические результаты.

Для любителей математики

Формулы умнее человека. Это сказал Генрих Герц, открывший электромагнитные волны, существование которых было предсказано в конце прошлого века Кларком Максвеллом. Герц имел в виду знаменитые уравнения Максвелла, в которых содержатся не только законы поведения электромагнитных волн, но и разгадка многих неизвестных в то время явлений.

О метрологии можно сказать, что она предусмотрительнее человека. Метрология заготовила впрок возможность измерения чрезвычайно больших и крайне малых величин и даже построила для них систему наименований задолго до того, когда техника нашла способы их достижения. В самом деле, понадобилось для радиолокации название импульсов длительностью в миллионную долю секунды — пожалуйста. В реестрах метрологов предусмотрена специальная единица — микросекунда. Хотя до этого люди редко имели дело даже с длительностями, меньшими тысячной доли секунды, — миллисекундами. Появились лазеры, дающие очень короткие импульсы света, и наготове еще более мелкая единица — наносекунда — для измерения миллиардных долей секунды. Но и этого оказалось недостаточно. Сейчас идет борьба за получение и измерение еще в тысячу раз более коротких — пикосекундных импульсов. Впрочем, физики уверяют, что длительность жизни некоторых из все размножающегося семейства элементарных частиц должна быть еще более короткой. Но это лежит за пределами нашей темы. Здесь же речь пойдет о рождении пикосекундных импульсов света.

Для любителей математики можно добавить, что десятеричная система чисел позволяет очень просто, наглядно и компактно записывать такие невообразимо малые величины. Для этого вместо длинного ряда нулей достаточно написать десятку и возвести ее в отрицательную степень, показывающую то место после запятой, где стоит первая отличная от нуля цифра. Например, вместо одной десятой можно писать 10 –1, вместо одной тысячной — 10 –3(здесь единичка стоит на третьем месте справа от запятой: 0,001). В соответствии с этой записью миллионная доля (микро) — это 10 –6, миллиардная доля (нано) — 10 –9, а интересующая нас сейчас пикосекунда — 10 –12секунды.

Первый лазер, созданный в 1960 году Мейманом, генерировал вспышки света длительностью около миллисекунды. И они состояли из хаотической последовательности микросекундных пичков. Уже в следующем году Хеллворс изобрел лазер, в котором специальный затвор быстро изменял добротность резонатора от очень малой до весьма большой величины. Лазер генерировал гигантские одиночные импульсы длительностью в несколько десятков наносекунд.

Дальнейший путь уменьшения длительности импульсов оказался неожиданно трудным. Несколько групп ученых, следуя умозрительным, лишь качественным, а не количественным рассуждениям Гейзика и Сковелла, безуспешно пытались укоротить гигантские импульсы, пропуская их через оптический усилитель.

Лишь сложное теоретическое исследование, проведенное Басовым и Летоховым, позволило понять причину неудач и найти выход из тупика. Но этот путь не привел к существенному продвижению. Конечно, укорочение гигантского импульса до двух-трех наносекунд с одновременным усилением их энергии позволило проникнуть дальше в глубь тайников природы. Но ученые жаждали радикальных результатов.

Как это ни парадоксально, труднее всего добиться новых значительных достижений, идя по проторенному пути. Легкая, прямая и привлекательная дорога в мире науки обычно тянется недалеко. А дальше неизбежные повороты ведут к ухабам, а то и в тупик. Но — такова человеческая натура — трудно решиться свернуть на целину, если впереди видны накатанные трассы. Если говорить о дорогах, ведущих в мир сверхкоротких импульсов света, то одну из них проложила нелинейная теория колебаний, созданная и развитая главным образом трудами двух советских школ физиков и математиков: школы Мандельштама — Папалекси и школы Крылова — Боголюбова. Нелинейная теория колебаний вскрыла и взяла на вооружение глубокое единство, скрытое за внешним различием многообразных периодических процессов, происходящих в природе и создаваемых человеком для нужд техники.

Поделиться:
Популярные книги

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

О, мой бомж

Джема
1. Несвятая троица
Любовные романы:
современные любовные романы
5.00
рейтинг книги
О, мой бомж

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Волков. Гимназия №6

Пылаев Валерий
1. Волков
Фантастика:
попаданцы
альтернативная история
аниме
7.00
рейтинг книги
Волков. Гимназия №6

Картофельное счастье попаданки

Иконникова Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Картофельное счастье попаданки