Культурологический подход в изучении детей с задержкой психического развития
Шрифт:
При решении примеров на сложение с суммой, выраженной круглыми десятками, двое учащихся допустили ошибки персеверации (15 + 5 = 10 – в индивидуальной беседе выяснилось, что они заменили действие сложения действием вычитания, произведя его по аналогии о предыдущим примером).
Ошибки учащихся при выполнении вычитания из круглых десятков связаны с незнанием состава десятка, таблицы и приемов вычитания однозначных чисел (например, 10 – 2 = 9).
Большие трудности у детей вызывало решение примеров, основанных на знании числового ряда и состава числа в пределах 20. Правильно выполнили примеры на сложение более семидесяти процентов и на вычитание около трети обследованных.
Правильно выполнили действия, в которых одним из компонентов или результатом является ноль, 46 % испытуемых. Анализ показал, что учащиеся допустили ошибки, свидетельствующие о непонимании значения числа ноль (12 + 0 = 0, 15 – 0 = 0), возможности получения нуля в результате действия (12–12 = 1, 12–12 = 12).
В процессе проведения эксперимента нами было выявлено, что учащиеся, допустившие сшибки, как правило, пользовались несовершенными, примитивными приемами вычислений: счетом на пальцах, рисовали и зачеркивали палочки, использовали отрезок числового ряда, линейки, присчитывали и отсчитывали по единице «в уме».
Для исследования навыка сравнения учащимся предлагалось вычислить значения числовых выражений и сравнить полученные результаты. Фрагментарно выполнили задание 2,1 % учащихся: вычислили значение числовых выражении, но забыли сравнить полученные результаты. Это свидетельствует о рассеянности учащихся, слабом удержании инструкции в процессе выполнения задания, а также о несформированности умения выполнять подобные задания. Индивидуальные беседы выявили, что 58,3 % испытуемых, неверно выполнивших задание, ориентировались только на числовые компоненты выражения или только на арифметические знаки, игнорируя полученные числовые значения выражений (например, при сравнении выражений 18 – 2… 18–10 записывали: 18 – 2 < 18–10); не поняли смысл задания 4,2 % испытуемых (например, записывали: 15 + 5 < > 15 + 1 – в беседе школьники говорили, что они знают знаки «<» («меньше») и «>» («больше»), но не могут расставить их верно, поэтому записали все, что знают. Отказался от выполнения один ученик, мотивируя тем, что не знает, как решать задание.
Слабо сформированным оказался у учащихся и навык решения простых арифметических задач. При решении простой арифметической задачи, содержащей отношения «больше на» учащиеся допустили ошибки:
1) непонимание смысла задачи – находили сумму чисел, используя вместо второго компонента одно из данных в условии чисел, или находили разность компонентов;
2) неправильный выбор действия для решения – вместо сложения выполнили вычитание;
3) запись только краткого условия задачи – 5,1 % учеников;
4) вычислительные ошибки допустили 7,2 % обследованных, при этом у 3 % из них такие ошибки сопровождали неверный ход решения задачи (например, 7 + 10 = 16);
5) отказ от выполнения задания – примерно 10 % учащихся.
Запись краткого условия задачи не являлась обязательным требованием в данном задании. Из общего количества учащихся, не решивших задачу, 83 % испытуемых сделали краткую запись. Анализ кратких записей условия задачи показал, что у большинства обследованных
Задачу, содержащую отношения «меньше на», правильно решили 48 % детей с задержкой психического развития. Анализ работ позволил выделить ошибки:
1) не поняли смысла задачи 30 % испытуемых;
2) ошибки персеверации сделали 8,3 % учащихся, решив задачу в два действия (первое, предусмотренное условием, а во втором нашли сумму двух компонентов. Накануне в классе повторяли решение задач в два действия, и дети по аналогии выполнили и предложенную задачу в два действия);
3) вычислительные ошибки – 16,7 % испытуемых;
4) записали только краткое условие задачи 4,2 % учащихся;
5) ошибки невнимания допустил один учащийся – написал действие с числами, которых не было в условии (8 – 2 = 6 вместо 10 – 2 = 8). В беседе учащийся объяснил, что сначала решил задачу устно (10 – 2 = 8), а затем записал решение задачи, используя уже полученный результат (8–2 = 6);
6) отказались от выполнения 8,7 % учащихся.
Запись краткого условия задачи сделали 62,5 % учащихся, из них правильно – 20 %. 38 % учеников, решивших задачу, верно записали наименование полученного результата и 85 % правильно записали ответ.
Правильно начертить отрезки заданной длины смогли только 24 % обследованных. Были выявлены ошибки:
1) связанные с несформированностью навыка измерения у 56 % исследованных (начертили отрезок меньше заданной длины 27,1 %, больше – 29,2 % испытуемых. Дополнительные исследования показали, что одной из причин ошибок данного вида является несформированность у учащихся понятия об отметке начала измерения – нуле, испытуемые начинали измерение от начала линейки или от единицы);
2) не сформировано само понятие «отрезок» у 8,4 % школьников (4,6 % обследованных учащихся вместо отрезка провели линию через весь лист; 3,8 % начертили два отрезка и соединили их между собой);
3) не обозначили границы отрезков 68,7 % учащихся.
При анализе работ прослеживается также слабая сформированность чертежно-графических навыков – в работах 23 % учащихся линии отрезков неровные, школьники проводили их несколько раз.
Анализ полученных в ходе обследования данных позволил сделать выводы, что после года пребывания в начальной общеобразовательной школе ни один из обследованных учащихся с задержкой психического развития не владел математическими знаниями и навыками не только в объеме, предусмотренном учебной программой [184], но и объеме программы для детей рассматриваемой категории [185], которые оканчивают первый класс специальной школы.
Вычислительные навыки были сформированы в следующем объеме:
• 94 % обследованных усвоили сложение и 63 % – вычитание однозначных чисел в пределах десятка;
• 65 % обследованных школьников правильно выполнили сложение и 31 % – вычитание чисел с переходом через разряд в пределах 20;
• 73 % владели навыком решения примеров на сложение и 31 % – на вычитание, основанных на знании числового ряда и состава чисел (в пределах 20);
• 54 % владели навыком выполнения действий сложения и вычитания, в которых одним из компонентов или результатом является ноль. Только 24 % владели навыком сравнения простых числовых выражений. Примерно у 58 % обследованных был сформирован навык решения простых арифметических задач в одно действие, содержащих отношения «больше на» и у 49 % – задач, содержащих отношения «меньше на».
Вкус ледяного поцелуя
2. Ольга Рязанцева
Детективы:
криминальные детективы
рейтинг книги
Барон устанавливает правила
6. Закон сильного
Старинная литература:
прочая старинная литература
рейтинг книги
Корпорация «Исполнение желаний»
2. Город
Приключения:
прочие приключения
рейтинг книги
Имперский Курьер
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
рейтинг книги
Гридень 2. Поиск пути
2. Гридень
Детективы:
исторические детективы
рейтинг книги
Энциклопедия лекарственных растений. Том 1.
Научно-образовательная:
медицина
рейтинг книги
