Курс на Марс. Самый реалистичный проект полета к Красной планете
Шрифт:
Бруно убили за то, что он заявлял в дискуссиях и сочинениях: Вселенная бесконечна, у других звезд, как и у Солнца, должны быть планеты, причем некоторые из них должны быть обитаемыми, и эти планеты, подобно нашей Земле, обращаются вокруг своих светил. И наблюдатели, живущие в тех других мирах, смотрят в небеса и видят наше Солнце и Землю, обращающуюся вокруг него, и поэтому «мы в небесах».
Это откровение стало шоком для средневекового человека, но почему нужно было убивать для того, чтобы не дать ему распространиться? Почему Галилею, младшему современнику Бруно, грозили смертью и десятилетиями держали его под домашним арестом? Почему астрономия, наука, которая вроде бы не имеет большого практического значения, вызывала такой гнев инквизиции в эпоху Возрождения? Проще говоря, почему небеса были столь недостижимы?
Костры инквизиции взметнулись так высоко, потому что астрономия подвергала сомнению сами основы западной цивилизации, знания, а значит, и власти. Со времен Вавилона небеса вместе
Так продолжалось веками, пока не настало время, когда несколько мыслителей решились опровергнуть представление о том, что Вселенная всегда будет за пределами понимания человечества. Изменения начались с работ Николая Коперника, который между 1510 и 1514 годами вновь развил давно забытую гелиоцентрическую теорию строения Вселенной (с Солнцем в центре мироздания), впервые постулированную греческим философом Аристархом Самосским, жившим в III веке до н. э. В гелиоцентрической системе мира планеты движутся вокруг Солнца по круговым орбитам. Эта идея была революционной, даже еретической и не могла точно описать наблюдаемые движения планет, хотя некоторые ученые того времени находили привлекательной ее фундаментальную простоту. Главным из них был Иоганн Кеплер.
Иоганн Кеплер родился в 1571 году, рос набожным лютеранином, хотя одновременно был убежденным платонистом и стремился познать истинную природу Вселенной, используя строгие законы геометрии. Позже он напишет: «Геометрия едина и вечна, она блистает в Божьем духе. Наша причастность к ней служит одним из оснований, по которым человек должен быть образом Божьим».
Эта цитата является ключевой не только для всей деятельности Кеплера. Если человеческий разум способен постичь Вселенную, это значит, что он подобен божественному разуму. А если так, то система, согласно которой Бог строил Вселенную, ее «геометрия», должна быть доступна человеческому пониманию, и, таким образом, если мы ищем и размышляем достаточно усердно, мы можем найти разумное объяснение для чего угодно. Это основополагающая задача науки. Это дело, за которое умер Бруно. Это утверждение, которое стремился доказать Кеплер и тем самым рассеять тьму в умах западной цивилизации. И сделал он это в значительной мере благодаря планете Марс.
В феврале 1600 года, в том же месяце, когда казнили Джордано Бруно, Кеплер пошел работать к Тихо Браге, без сомнения, великому астроному-наблюдателю своего времени. У Браге была своя теория устройства Вселенной, и он поручил двадцативосьмилетнему Кеплеру вычислить орбиту Марса, разумеется, чтобы найти подтверждение своим расчетам. Когда в октябре 1601 года ученый умер, император Священной Римской империи Рудольф II повелел Кеплеру сменить Браге в должности придворного математика и продолжить его исследования. Теперь у Кеплера было все необходимое, чтобы заняться Марсом в полную силу.
Со времен Аристотеля астрономы незатейливо полагали, что планеты движутся по неизменным круговым орбитам, поскольку, как утверждал сам Аристотель, круг – идеальная форма и только круговое движение может быть бесконечным. Как Кеплер ни старался, он не мог подобрать такую круговую орбиту, которая бы соответствовала наблюдениям Тихо Браге. Он мог бы прибегнуть к эпициклам, однако отказывался это делать. Система эпициклов выглядела тут совершенно неприменимой, но где же тогда решение? Что это могло быть, если не круговые орбиты? Кеплеру понадобились восемь лет напряженной работы, чтобы осознать, что показывают наблюдения: Марс движется по эллиптической орбите, в одном из фокусов которой находится Солнце. Сейчас мы знаем, что орбита Марса наиболее эллиптичная во всей Солнечной системе, [8] если не считать
8
Утверждение ошибочно. Наибольший эксцентриситет е = 0,206 – у Меркурия. Эксцентриситет Марса е = 0,093. – Прим. пер.
9
С 24 августа 2006 года по решению Международного Астрономического Союза считается не девятой планетой Солнечной системы, а карликовой планетой. – Прим. пер.
Кеплер опубликовал результаты своих трудов в 1609 году в работе, озаглавленной как «Новая астрономия, причинно обоснованная, или небесная физика, следующая из исследований движений звезды Марса, опирающихся на наблюдения достопочтенного Тихо Браге». В отличие от многих предшественников, астрономов и философов, Кеплер объявил свою новую астрономию не просто математической концепцией, которая объясняет движение небесных тел. Напротив, это был трактат об «истинной реальности» небес, грандиозная работа, которая ниспровергала догму, существовавшую две тысячи лет, – на ее место приходила астрономия, основанная на причинах и доказательствах. В этой работе ученый изложил то, что мы сейчас знаем как первый и второй закон Кеплера о движении планет. Согласно этим законам, каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце, а радиус-вектор, соединяющий Солнце и планету, за равное количество времени описывает равные площади. Эти законы верны, и их можно найти в любом современном учебном пособии по астрономии и звездной динамике. Однако не менее важна и ошибочная гипотеза Кеплера о том, что планеты движутся вокруг Солнца за счет исходящей от него «магнитной» силы, распространяющейся «подобно свету». Когда оппоненты обвинили его в смешении физики и астрономии, Кеплер ответил: «По моему мнению, обе науки так тесно связаны, что одна не сможет достичь совершенства без другой». Другими словами, Кеплер не описывал модель Вселенной, чья геометрия совершенна по умолчанию, он изучал Вселенную, в которой причинно-следственные связи могут быть понятны человеку. Тем самым Кеплер резко изменил статус человечества во Вселенной. Хотя люди перестали быть центром мироздания, у них появилась возможность его постичь. Поэтому, согласно словам Кеплера, адресованным Галилею и ставшим эпиграфом для этой главы, Вселенная была доступна не только человеческой мысли, но и для непосредственного изучения.
Труды последующих десяти лет позволили Кеплеру опубликовать его важнейшее сочинение «Гармония мира». В нем он изложил свое последнее великое открытие – третий закон движения планет: квадрат периодов обращения планет пропорционален кубу расстояния от планет до Солнца. Применяя этот закон, достаточно просто математически вывести выражение, которое сейчас известно как закон всемирного тяготения Ньютона. Законы Ньютона легли в основу классической физики, новой мощной науки, которая сделала возможной промышленную революцию XVIII–XIX веков. Исследования Кеплера ознаменовали окончание Темных веков, и начались научная и промышленная революции – первая встреча с Марсом принесла богатые плоды.
Путешествия с телескопом
Кеплер использовал Марс, чтобы доказать что Земля – тоже планета. Следовательно, планеты, те маленькие движущиеся огоньки в небе, на самом деле были огромными мирами, похожими на Землю. Но как исследовать эти невероятные небесные тела? Вскоре инструмент оказался под рукой. Меньше чем через год после того, как Кеплер опубликовал свою «Новую астрономию», Галилей обратил в небо новый инструмент – телескоп. Открытые им за несколько недель наблюдений горы на Луне и «три маленькие звездочки», танцующие вокруг Юпитера, стали дополнительным подтверждением кеплеровой модели мира. Довольно скоро линзы множества телескопов были устремлены к Марсу.
Итальянский астроном Франческо Фонтана в 1636 году сделал первый набросок Марса, видимого в телескоп, хотя сегодня узнаваемые детали на этом рисунке найти не удается. В 1659 году нидерландский астроном Христиан Гюйгенс создал первое изображение Марса, где такая деталь была: похожее на треугольник темное пятно, которое выделяется на диске планеты, сейчас известно как Большой Сирт. Тщательно наблюдая Сирт и другие детали, астрономы прошлого определили, что марсианский день, или сол, близок по продолжительности к земному. В 1666 году итальянец Джованни Кассини измерил продолжительность марсианских суток, которая оказалась равна 24 часам, 37 минутам и 22 секундам. Хотя Кассини, по-видимому, также был первым, кто заметил полярные шапки Марса, первый набросок одной из шапок в 1672 году сделал Гюйгенс. Используя наблюдения, сделанные в 1770–1783 годах, Уильям Гершель, открыватель Урана, заметил, что на Марсе должны меняться времена года, так как его полярная ось имеет наклон в 30 градусов (современное значение – 24 градуса).