Чтение онлайн

на главную - закладки

Жанры

Курс теоретической астрофизики
Шрифт:

2. Объяснение вспышки.

Как уже сказано, при вспышке новой звезды от неё отделяется оболочка, которая затем расширяется с большой скоростью. Легко показать, что расширение оболочки должно приводить к наблюдаемым изменениям блеска и спектра новой.

Пусть в момент вспышки от звезды оторвалась оболочка, оптическая толщина которой в непрерывном спектре гораздо больше единицы. С расширением оболочки её оптическая толщина будет убывать. Однако до тех пор, пока она не станет порядка единицы, оболочка будет служить не только обращающим слоем, но и фотосферой. В таком случае расширение оболочки поведёт за собой возрастание блеска звезды.

Вследствие же приближения к наблюдателю обращённой к нему части оболочки линии поглощения будут смещены в фиолетовую сторону спектра. Именно такой спектр наблюдается в период увеличения блеска новой.

В момент достижения максимума блеска оптическая толщина оболочки в непрерывном спектре становится порядка единицы. В это время до внешних частей оболочки начинает доходить излучение непосредственно от звезды, и в оболочке вспыхивают яркие линии. Причина появления ярких линий — та же, что и в случае газовых туманностей, т.е. флуоресценция. Вместе с тем яркие линии могут возникать и в результате столкновений оболочки с налетающим на неё веществом, которое выбрасывается из звезды после отрыва оболочки.

Излучение в линиях доходит до наблюдателя не только от приближающейся к нему части оболочки, но и от удаляющейся. Оно не поглощается оболочкой вследствие эффекта Доплера. Ширина ярких линий оказывается поэтому соответствующей удвоенной скорости расширения оболочки. С фиолетовой стороны яркой линии находится абсорбционная линия, возникающая в части оболочки, приближающейся к наблюдателю и экранирующей звезду. Схема возникновения спектральных линий в расширяющихся оболочках новых дана на рис. 38.

Рис. 38

После максимума блеска, по мере дальнейшего расширения оболочки, её оптическая толщина в спектральных линиях уменьшается. Вследствие этого тёмные компоненты ярких линий ослабевают, а затем исчезают. На некотором этапе в оболочке начинают осуществляться условия, необходимые для появления запрещённых линий, т.е. плотность излучения и плотность вещества становятся достаточно малыми. Начавшаяся с появления запрещённых линий «небулярная стадия» длится довольно долго — до тех пор, пока яркость рассеивающейся оболочки (обусловленная в основном излучением в эмиссионных линиях) не станет меньше яркости самой звезды. Спектр звезды, принадлежащий в это время к типу WR, показывает, что из звезды все ещё продолжается выбрасывание вещества. Когда этот процесс заканчивается, звезда приобретает спектр класса O без эмиссионных линий.

На основе приведённого объяснения вспышек новых можно дать простые методы для определения их параллаксов. Эти методы очень важны, так как тригонометрические параллаксы новых совершенно ненадёжны вследствие их малости.

Один из методов определения параллакса новой основан на сопоставлении смещений линий поглощения со скоростью увеличения блеска перед максимумом. Из наблюдений можно найти для двух моментов времени t и t видимые величины m и m и температуры T и T (по спектральному классу). Пользуясь известной формулой, связывающей абсолютную величину звезды M с её температурой T и радиусом R,

M

=

29 500

T

5 lg R

0,08

,

(29.1)

а также тем обстоятельством, что разность видимых величин звезды равна разности абсолютных величин

её, т.е. m-m=M-M, получаем следующую формулу, определяющую отношение радиусов звезды в моменты t и t:

lg

R

R

=

5900

T

5900

T

m-m

5

.

(29.2)

С другой стороны, для разности радиусов в моменты t и t имеем

R-R

=

v(t-t)

,

(29.3)

где v — скорость расширения фотосферы, находимая по смещению абсорбционных линий. Из соотношений (29.2) и (29.3) определяется каждая из величин R и R в отдельности. Это даёт возможность найти из соотношения (29.1) абсолютную величину новой, а затем из сравнения её с видимой величиной — параллакс.

Другой способ определения параллакса новой основан на измерении скорости расширения её оболочки. Эта скорость может быть измерена с одной стороны по ширине ярких полос в спектре и выражена в километрах в секунду, а с другой стороны по наблюдаемому расширению небулярной оболочки и выражена в угловой мере. Этот способ более точен, чем предыдущий. Расстояния и абсолютные величины в максимуме, приведённые в табл. 46 для ряда новых, определены именно этим способом.

Интересным путём был найден параллакс Новой Персея 1901 г. Наблюдавшаяся вокруг этой новой звезды туманность расширялась столь быстро, что её ни в коем случае нельзя было признать за оболочку, выброшенную при вспышке. Поэтому было высказано предположение, что Новая Персея 1901 г. вспыхнула внутри пылевой туманности и создала вокруг себя освещённую область, расширявшуюся со скоростью света. Это предположение было подтверждено тем, что полученный через полтора года после вспышки спектр туманности оказался таким же, каким был спектр звезды в момент максимума блеска.

Параллакс Новой Персея 1901 г. был определён вторым из указанных выше способов с учётом того, что скорость «расширения» освещённой области равнялась скорости света, т.е. 300 000 км/с. Впоследствии вокруг Новой Персея была открыта вторая туманность, расширявшаяся гораздо медленнее первой. Это была уже «настоящая» оболочка, оторвавшаяся от звезды при вспышке.

3. Первый период вспышки.

Переходя к более подробной интерпретации спектра новой звезды, остановимся сначала на периоде от начала вспышки до момента максимума блеска. В это время новая обладает непрерывным спектром с линиями поглощения, смещёнными в фиолетовую сторону от их нормального положения. По профилям линий можно пытаться решить некоторые вопросы, относящиеся к вспышкам. Для этого, очевидно, надо предварительно теоретически определить профили линий поглощения, возникающих в расширяющейся атмосфере. При этом следует принять во внимание большую протяжённость атмосферы, т.е. медленное падение плотности вдоль радиуса.

Будем для простоты считать, что внешние части звезды состоят из «фотосферы» и «атмосферы», т.е. примем модель Шварцшильда — Шустера. Интенсивность излучения, идущего к наблюдателю от фотосферы на угловом расстоянии от центра диска, обозначим через I (в пределах линии эта величина может считаться не зависящей от частоты). Интенсивность излучения, выходящего из атмосферы в частоте внутри линии на том же угловом расстоянии от центра диска, обозначим через I Если приближённо учитывать только истинное поглощение в линии, то будем иметь

Поделиться:
Популярные книги

Последняя Арена 9

Греков Сергей
9. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 9

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2