Чтение онлайн

на главную - закладки

Жанры

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:

Полные заселенности (n+а) орбиталей а неортогонального базиса {} определяются аналогично заселенностям ортогонального базиса:

(4.59)

Предполагая, что оператор электронной плотности представлен в базисе {} матрицей

, определение (4.59) можно переписать также в виде

(4.60)

Детальное исследование заселенностей n+a было проведено Дэвидсоном [37]

и Роби [74], которые показали, в частности, что

где n1 — наибольшая из естественных заселенностей. Это неравенство, как и аналогичные неравенства для определяемых ниже заселенностей na и n0а, следует из условия антисимметрии многоэлектронной функции (х1,..., хN) относительно перестановок электронных координат.

Неподеленную заселенность (nа) орбитали а можно определить как заселенность ее компоненты, которая ортогональна ко всем прочим орбиталям :

(4.62)

где

(4.63)

aS в формуле (4.63) обозначает матрицу перекрывания, полученную из полной матрицы S вычеркиванием интегралов перекрывания Sab, включающих рассматриваемую орбиталь а.Такая ортогонализация (аналогичная ортогонализации по методу Шмидта) исключает из полной заселенности n+а ту ее часть, которая принадлежит не только а, но и остальным орбиталям неортогонального базиса (рис. 23).

Рис. 23. Геометрическая иллюстрация к определению неподеленной электронной заселенности

Учитывая отмеченное Галлупом и Норбеком [40] равенство

(4.64)

выражение(4.62) можно привести к чрезвычайно простому виду

(4.65)

В частном случае одноэлектронной системы, состояние которой описывается орбиталью

(4.66)

диагональные элементы матрицы плотности равны

(4.67)

(4.68)

Эта формула, то чиее ее правая часть, приводилась в работе [40], но лишь в качестве промежуточного результата. Окончательное выражение для заселенностей (по Галлупу и Норбеку) получалось путем нормирования nа на единицу:

(4.69)

Обобщение формулы (4.69) на многоэлектронные системы, очевидно, должно осуществляться заменой |Са|2 на Раа:

(4.70)

Однако такой подход к проблеме является ошибочным. Расчеты свидетельствуют, в частности, о чрезмерно больших значениях n(GN) для АО внутренних оболочек и неподеленных электронных пар. Например, в молекуле LiH:

Заселенность перекрывания орбитали а с остальными орбиталями неортогонального базиса определяется как разность между полной и неподеленной заселенностями:

(4.71)

Заселенность

перекрывания
представляет ту долю полной электронной заселенности, которая принадлежит одновременно к рассматриваемой и всем прочим базисным АО. Нетрудно убедиться в том, что величина
равна нулю, если АО а не перекрывается ни с одной из орбиталей базиса , т. е. если

(4.72)

для всех b/=a.

Аддитивная заселенность.

Сумма засел енностей n+a или nа по всем базисным орбиталям совпадает с числом электронов (N) в рассматриваемой системе только в том случае, если эти орбитали ортогональны. Иными словами, заселенности орбиталей неортогонального базиса неаддитивны.

Чтобы определить аддитивные заселенности АО, необходимые, например, для вычисления формальных зарядов атомов, следует сопоставить каждой АО а неортогонального базиса орбиталь a некоторого ортонормированного базиса. Требование минимальной деформации исходных орбиталей в процессе ортогонализации однозначно отбирает из всех возможных методов ортогонализации "симметричный" метод Лёвдина (рис. 24)

(4.73)

Рис. 24. Геометрическая иллюстрация лёвдинской ортогонализации двух неортогональных векторов 1 и 2

Как показали Слэтер и Костер, ортонормировка по Лёвдину сохраняет трансформационные свойства неортогонального базиса в том смысле, что при унитарном преобразовании базиса {} соответствующий лёвдинский базис {} преобразуется той же унитарной матрицей. Отсюда следует, в частности, что орбитали а исходного многоцентрового базиса АО и соответствующие им орбитали a преобразуются по одним и тем же представлениям подгруппы GA точечной группы симметрии молекулы (G). При этом подгруппа GA включает только те преобразования группы G, которые не затрагивают центр А (т, е, ядро атома A). Таким образом, орбитали a и фa обладают одинаковыми свойствами симметрии относительно указанных преобразований.

Согласно теореме Карлсона и Келлера, лёвдинский базис

отличается от всех прочих базисов, полученных ортогонализацией исходного базиса {}, максимальной близостью к {} в смысле минимума среднеквадратического отклонения

(4.74)

Представление об изменении формы и размеров атомных орбиталей при их ортогонализации можно получить, сравнивая средние значения

и
или среднеквадратические радиусы
Для сферических АО с соответствующими значениями для ортогонализованных орбиталей. Такие вычисления (в табл. 8 приведены результаты для молекулы N2) свидетельствуют, что орбитали лёвдинского базиса, соответствующие валентным АО, могут быть локализованными в окрестности атомных ядер в большей степени, чем исходные. Сжатие орбиталей наблюдается как в "поперечном", так и в "продольном" направлениях. 1s-Орбитали внутренних оболочек при ортогонализации несколько расширяются, оставаясь тем не менее существенно локализованными у своих ядер. Среднеквадратический радиус этих орбиталей в несколько раз меньше, чем валентных.

Поделиться:
Популярные книги

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Гридень. Начало

Гуров Валерий Александрович
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гридень. Начало

Двойник Короля 5

Скабер Артемий
5. Двойник Короля
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Двойник Короля 5

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода

Шаман. Похищенные

Калбазов Константин Георгиевич
1. Шаман
Фантастика:
боевая фантастика
попаданцы
6.44
рейтинг книги
Шаман. Похищенные

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса