Чтение онлайн

на главную - закладки

Жанры

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:

Рис. 3. Линейно-независимые инварианты и соответствующие им структуры бензола

Создание в 1925-1926 гг. квантовой механики позволило глубоко проникнуть в сущность явлений и процессов, протекающих в атомах и молекулах, выявить физический смысл понятия химической связи и других понятий классической химии.

В конце 20-х годов были установлены общие квантовомеханические принципы и приближения, необходимые для описания многоэлектронных систем. Как и в период разработки электронных моделей (1900-1926 гг.) строения вещества, каждая квантовомеханическая модель химической связи существенно опиралась на квантовомеханическую (шредингеровскую) модель атома. На протяжении всей последующей эволюции теории многоэлектронных систем указанная взаимосвязь между теорией атома

и теорией молекул сохранялась. Поэтому прежде чем приступить к рассмотрению основных этапов развития молекулярной квантовой химии и некоторых ее современных проблем, в следующей главе мы остановимся на основных понятиях и представлениях квантовой теории строения атома.

Глава 2. Квантовомеханическое описание строений атома

В настоящей главе кратко изложены некоторые результаты квантовомеханической теории строения атома, причем основное внимание уделено тем ее аспектам, которые представляют интерес для теории химической связи.

Некоторые особенности квантовомеханического описания явлений микромира

В квантовой механике состояние N-электронной системы описывается волновой функцией

зависящей от пространственных координат (ri) и спиновых переменных (i) всех электронов. Эта функция должна удовлетворять уравнению Шредингера

(2.1)

где

— оператор Гамильтона (гамильтониан), определяющий рассматриваемую систему и для атома с зарядом ядра Z,имеющий вид

(2.2)

Не следует думать, что любое решение уравнения Шредингера (2.1) имеет физический смысл. В действительности на функцию накладываются определенные ограничения. В частности, для связанных состояний с дискретным спектром Е должно выполняться условие нормировки:

(2.3)

Для многоэлектронных систем чрезвычайно важным является требование антисимметричности волновой функции

относительно перестановок тождественных частиц (электронов):

(2.4)

Одним из следствий этого требования, называемого принципом Паули, является то, что для трех и большего числа электронов основным состоянием не будет состояние с наименьшим собственным значением гамильтониана, так как последнему соответствует не имеющая физического смысла симметричная волновая функция.

Значение принципа Паули в теории химической связи исключительно велико, и мы в дальнейшем неоднократно будем к нему обращаться. Сейчас отметим только, что любую антисимметричную N-электронную функцию можно представить в виде линейной комбинации так называемых "детерминантов Слэтера", составленных из одноэлектронных волновых функций (спин-орбиталей):

(2.5)

где

(2.6)

и индекс I при детерминанте Слэтера I обозначает определенную совокупность ортонормированных спин-орбиталей i(r), которая называется спин-орбитальной конфигурацией.

В общем случае в разложение многоэлектронной волновой функции входит бесконечно много детерминантов Слэтера. Часто ограничивают это разложение одним или несколькими детерминантами. Качество такой аппроксимации зависит от качества включенных в I спин-орбиталей. Наилучшие спин-орбитали получаются в методе самосогласованного поля Хартри-Фока, на котором мы подробно остановимся в третьей главе.

Электронные

конфигурации атомов, термы и тонкая структура энергетических уровней

Атомные спин-орбитали, описывающие одноэлектронные состояния в атоме, приближенно (без учета спин-орбитального взаимодействия) можно представить в виде произведения бесспиновой одноэлектронной волновой функции, называемой орбиталью, на одноэлектронную спиновую функцию, которая является собственной функцией оператора проекции собственного момента импульса электрона

(2.7)

Собственные функции , соответствующие положительному cобственному значению

обозначаются как , a отрицательному

Слэтеровский детерминант, составленный из N спин-орбиталей, является N-электронной функцией, удовлетворяющей принципу Паули и соответствующей определенным проекциям N-электронных орбитального и спинового моментов, определяемых квантовыми числами ML и MS. Однако однодетерминантная волновая функция не обязательно будет собственной для операторов квадрата полного орбитального и полного спинового моментов. Собственные функции этих операторов представляются линейными комбинациями детерминантов Слэтера, соответствующих одним и тем же значениям квантовых чисел

в пределах выбранной конфигурации.

Под электронной конфигурацией атома понимается определенное распределение электронов по nl– оболочкам:

(2.8)

Каждая (nрlр)-оболочка представляет набор

спин-орбиталей, из которых p заселены, т. е. включены в детерминант Слэтера. Эти p спин-орбитали можно выбрать из (nрlр)-оболочки
способами. Следовательно, конфигурации К соответствует
однодетерминантных функций, причем их число определяется фактически лишь незамкнутыми оболочками, для которых p<
. Например, для конфигурации ls22s22p2 атома углерода можно построить
детерминантов. Из них можно составить далее 15 линейных комбинаций, соответствующих определенным значениям квантовых чисел L и S и образующих атомные термы.

Термом называется совокупность многоэлектронных функций определенной конфигурации, характеризующаяся общими для; всех функций терма значениями квантовых чисел полных орбитального и спинового моментов (L и S). Отдельные волновые функции терма различаются по квантовым числам проекций указанных моментов (ML и MS). Если не принимать во внимание взаимодействие орбитального и спинового моментов, то все волновые функции терма отвечают одному и тому же (2L + 1)(2S + 1) — кратно вырожденному энергетическому уровню атома. Спин-орбитальное взаимодействие приводит к расщеплению этого вырожденного уровня на уровни тонкой структуры, характеризуемые квантовым числом полного спин-орбитального момента J. Поправка на спин-орбитальное взаимодействие определяется приближенным выражением

Поделиться:
Популярные книги

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Ох уж этот Мин Джин Хо – 3

Кронос Александр
3. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо – 3

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат