Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность
Шрифт:
Опираясь на работы Эйнштейна и Бора, он предположил, что электроны и все материальные тела имеют как волновые свойства, так и свойства частиц. Как и фотоны, они колеблются, но привязаны к определенному месту в пространстве и характеризуются длиной волны, связанной с их импульсом. Эта смелая идея немедленно поместила составляющие материи, такие как электроны, и переносчики силы, такие как фотоны, на почти одинаковое основание.
Почти, но с одним важным различием.
Ключевое различие между кирпичиками материи, названными «фермионами» (в честь одного из основателей квантовой статистики Энрико Ферми), и эссенциями силы, получившими имя «бозоны» (в честь индийского физика Сатьендра
3
Англ. «spin» – кружение, верчение.
Фермионы решительно асоциальны, у каждого свое собственное квантовое состояние. Австрийский теоретик Вольфганг Паули обосновал это правило, названное «принципом исключения». Бозоны, наоборот, в достаточной степени компанейские, чтобы разделять между собой квантовые состояния.
Если мы представим квантовые состояния как места в микроавтобусе и спросим, сколько частиц может поместиться на заднем сиденье, то ответ для фермионов будет «один», а для бозонов «так много, как им хочется». В отличие от фермионов, два или более бозона могут иметь одинаковое квантовое число (набор параметров, определяющих конкретное квантовое состояние).
Если таксист посадит в машину два фермиона, то лучше бы у него было два свободных сиденья – по одному для каждого. Иначе им понадобятся две разных машины. Бозоны, с другой стороны, любят набиваться в одну и ту же квантовую конфигурацию. Если представить их в виде пассажиров, то с такой готовностью делиться местом они никогда не будут долго ждать попутки.
Предположим, вы пытаетесь заставить два электрона перейти на самый низкий уровень энергии в атоме, иными словами, на ближайшую к ядру орбиту. Поскольку они являются фермионами, они не могут находиться в одном и том же квантовом состоянии и следовательно, должны отличаться. Один из них занимает положение, описываемое как «спин вверх», другой должен быть в противоположном состоянии – «спин вниз».
Терминология восходит к явлению, именуемому «эффект Зеемана», которое возникает, когда атом помещается в магнитное поле. Электрон «спин вверх» совпадает с направлением поля, а «спин вниз» наоборот, и тем самым их уровни энергии немного отличаются.
Исходно авторы концепции спина, голландские физики Джордж Уленбек и Сэмюэл Гаудсмит взяли этот термин потому, что они думали – электроны на самом деле похожи на заряженные вращающиеся волчки. Их реакция на магнитное поле предположительно исходит от направления вращения: против часовой стрелки, если ось направлена вверх, и по часовой, если вниз. Когда стало ясно, что подобное невозможно – волчки должны были вращаться быстрее скорости света – это ничего не изменило, термин прижился. Так что физики продолжили использовать спин и определять его значение, понимая, что о вращении речь не идет.
В середине двадцатых годов немецкий ученый Вернер Гейзенберг и его австрийский коллега Эрвин Шредингер предложили конкурирующую гипотезу, способную объяснить свойства атома лучше, чем модель Бора. Схема Гейзенберга выглядела более абстрактной, он использовал математические таблицы, именуемые «матрицами», чтобы показать вероятность того, как один уровень энергии меняется на другой. Метод Шредингера, куда более простой для
Но обе гипотезы хорошо соответствовали экспериментальным данным, и это побудило немца Макса Борна предположить, что можно их объединить.
В комбинированной теории Борна решение волнового уравнения Шредингера предстает в виде волн вероятности, названных «волновыми функциями», а не в виде шариков материи. Волны вероятности очерчивают шансы для частиц находиться в любой заданной позиции, а не определяют конкретные позиции (технически нужно возвести волновую функцию в квадрат, чтобы получить вероятность). Они похожи на кривые в виде колокола, описывающие шансы на то, что при броске костей выпадет некая сумма. Пики и провалы волновой функции показывают, где электроны можно обнаружить с большей или меньшей вероятностью соответственно.
Волновые функции далеки от постоянства, иногда, в зависимости от факторов окружающей среды, они постепенно изменяются. Как пример возьмем электрон, находящийся в медленно изменяющемся магнитном поле – его волновая функция будет трансформироваться столь же неспешно. В других условиях волновые функции резко переходят из одной конфигурации в другую.
Как и в матричной механике Гейзенберга, такие резкие трансформации не являются на сто процентов предсказуемыми, скорее на это всегда есть определенные шансы, как при подкидывании монетки или вращении рулетки.
Уравнение Шредингера, хотя получилось и полезным, и элегантным, не включало несколько важных свойств электронов. Оно не брало в расчет их спин, а также не учитывало эффекты специальной теории относительности Эйнштейна, предложенной в том же 1905-м, волшебном году, когда он создал гипотезу фотоэлектрического эффекта.
В то время как общая теория относительности прилагается к гравитации, специальная теория относительности, ее предшественница, приложима к частицам, движущимся с высокими, но постоянными скоростями. Когда мы занимаемся электронами, игнорируя монументальные открытия Эйнштейна, трудно ждать прорывов.
Относительно говоря
Мотивация Эйнштейна при создании специальной теории относительности происходила от озадачивающего противоречия между классической механикой и теорией электромагнетизма, завязанной на постоянство скорости света. Будучи молодым, австрийский физик поставил мысленный эксперимент, в котором бегун пытается не отстать от световой волны.
Если вдруг бегун достаточно быстр, то классическая механика Ньютона позволяет ему держаться «шаг в шаг» с волной света. Теория электромагнетизма Максвелла, тем не менее, делает это невозможным, поскольку в ней скорость света предстает одинаковой для всех наблюдателей вне зависимости от их собственной, самой невероятной скорости.
Словно преследуя вечно отступающий мираж в пустыне, бегун никогда не сможет сравняться с волной.
Предложенное Эйнштейном решение этой задачи, специальная теория относительности, утверждает, что параметры пространства и времени зависят от относительных скоростей наблюдателей.
Резвый бегун и тот, кто остается на месте, могут по-разному оценить расстояние, пройденное лучом света, и время, которое понадобилось на это путешествие. С точки зрения покоящегося наблюдателя пространство будет сжато, а время растянуто, с точки зрения движущегося – наоборот. Тем не менее, поделив дистанцию на время, чтобы определить скорость света, оба получат одинаковое значение. Следовательно, скорость света, а не показатели линеек и часов, может служить универсальным стандартом.