Чтение онлайн

на главную - закладки

Жанры

Кварки, протоны, Вселенная
Шрифт:

Еще более удивительные частицы предсказывает теория «великого объединения», в которой электрослабое поле объединяется с сильным, ядерным. Эта теория — дальнейшее развитие идей Янга и Миллса, следующий шаг в построении единой теории поля. Хотя теория «великого объединения» еще весьма неопределенна, у нее много различных вариантов и плохо изученных возможностей, предсказание цунами-монополей получается почти в любом ее варианте.

Просто поразительно, как с разных сторон математический аппарат подсказывает нам идею магнитных частиц.

Монополи теории «великого объединения» — фантастически массивные частицы. Они по меньшей мере в 1016 раз тяжелее протона (умножьте массу протона на 10 тысяч триллионов!). Их масса больше, чем у бактерии! Их даже частицами называть неловко, а тем более элементарными. Конечно,

ни один ускоритель не в состоянии породить такое «микрочудовище». Не под силу это и даже самым высокоэнергетическим космическим частицам. Столь массивные объекты могли выкристаллизоваться лишь из энергии первичного поля в момент рождения Вселенной, когда ее температура и плотность были фантастически велики и энергии хватало для рождения самых тяжелых частиц.

Конечно, скажет читатель, легко апеллировать к таинственному Биг Бэнгу: ведь о том, что происходило в те далекие времена, можно фантазировать как угодно. Все равно все сгорело... Но это не так. Криминалисты утверждают, что ни одно событие нашей жизни не уходит в прошлое, не оставив после себя следов, по которым многое можно восстановить спустя недели, месяцы, а иногда и годы. Космологи сродни криминалистам: они утверждают то же самое. Теоретические картины младенчества Вселенной — это не беспочвенные фантазии, хотя в них немало и гипотетического. У американского физика Стива Вайнберга, одного из авторов электрослабой теории, есть книга «Первые три минуты» (недавно она вышла в русском переводе), где очень хорошо рассказывается, как современная наука представляет себе развитие Вселенной, начиная с сотой доли секунды после начала Большого взрыва. Да, об этих секундах и минутах известно уже довольно много. Известно из анализа интенсивности и спектра реликтового излучения (инфракрасного излучения, образовавшегося во времена, когда Вселенная была еще очень горячей, распространившегося по всему ее объему и сохранившегося до наших дней), из сопоставления относительной распространенности водорода, гелия и других легких химических элементов, синтез которых начался сразу же после того, как Вселенная несколько остыла, и зависел от господствовавших в то время условий, и из некоторых других астрофизических данных и математических расчетов. Но вот что было с Вселенной в самые первые мгновения ее жизни, в тысячные и миллионные доли секунды, Вайнберг ничего сказать не мог. Еще 10 лет назад (книга его вышла в США в 1977 г.) это было сплошное белое пятно. Человеческого воображения не хватало, чтобы представить себе то, что там могло происходить.

Заглянуть в эту самую интригующую область нашей истории, вплоть до фантастически малых величин порядка 10– 35 секунд, позволяет теперь теория «великого объединения». Это был мир первозданной плазмы, где еще не существовало элементарных частиц, а были только их составные части — первичные «кубики»-кварки и связывающее их поле сильного взаимодействия. Некоторые частички, находившиеся в этом огненном сиропе, возможно, несли магнитный заряд. Впрочем, какой это был заряд, сказать трудно. Температура была еще так велика, что в первые мгновения после своего рождения раскаленный мир оставался совершенно симметричным, любые его свойства проявлялись с равной вероятностью. Расщепление единого симметричного взаимодействия на электромагнитное, слабое, сильное — на те виды взаимодействий, которые действуют в современном мире,— произошло позднее, приблизительно через 10– 14 — 10– 13 секунд после начала расширения.

Расчеты показывают, что от тех давних «горячих денечков» нам в наследство должно было остаться довольно много тяжелых монополей. Сначала даже получалось, что монополей во Вселенной должно быть столько же, сколько протонов. Затем, при более детальном рассмотрении реакций в первичном огненном шаре, массу магнитного вещества пришлось уменьшить, но все равно она очень велика — на много порядков больше того, что следует из анализа экспериментальных данных.

По этим данным, кстати, выходит, что в пространстве рассеяно очень много невидимого нам вещества. Астрофизики называют его скрытой массой и утверждают, что эта масса не может превосходить массу светящегося, атомарного вещества более чем в 10 раз. Иначе масса Вселенной была бы больше критической и расширение пространства сменилось бы его сжатием. Если пренебречь вкладом в эту скрытую массу нейтронов, нейтрино и других нейтральных частиц,

можно даже допустить, что невидимое вещество целиком состоит из монополей, а видимое, как давно известно,— из протонов. При этом масса всех монополей оказывается на порядок больше массы протона. Ну а если вспомнить, что по теории «великого объединения» каждый монополь весит столько, сколько 1016 протонов, то отсюда воспоследует, что в среднем во Вселенной на каждые 1015 протонов приходится не более одного монополя. Это несравненно меньше того, что предсказывает теория, но все же совсем немало. Чтобы ощутить эту величину, заметим, что в одном кубическом сантиметре вещества содержится приблизительно 1024 протонов, и значит, там должно быть около миллиарда монополей. Огромное количество!

Правда, это в среднем, если бы монополи распределялись равномерно. А они могут собираться в сгустки, концентрироваться в центре тяжелых планет или звезд, удерживаемые их гравитационным полем. Кроме того, астрофизики дают нам верхнюю оценку, на самом деле монополей, по-видимому, значительно меньше. По крайней мере в миллион раз. В противном случае они оказали бы очень сильное возмущающее влияние на магнитное поле Галактики, и оно имело бы совсем не ту структуру, которая наблюдается сегодня.

С точки зрения теории «великого объединения» открытие сверхтяжелых монополей имело бы исключительно важное, принципиальное значение. Этим была бы окончательно подтверждена правильность самой идеи «великого объединения», и теоретики могли бы с большей уверенностью рассматривать процессы, непосредственно связанные с Большим взрывом.

В последние годы во всем мире снова было выполнено много экспериментов по поиску сверхтяжелых монополей. Пока все опыты закончились неудачей. Учитывая чувствительность приборов, можно сказать, что в течение года каждый квадратный метр земной поверхности пересекает не более одного-двух монополей. Если бы их было больше, аппаратура бы их зафиксировала. Астрофизические оценки предсказывают в миллион раз меньший поток — несколько монополей на один квадратный километр. Это, конечно, осложняет дело.

Обнаружить предсказанные теорией «великого объединения» монополи невероятно трудно. Ко всему прочему, по меркам ядерной физики, большинство из них — довольно медленные частицы. Только такие «ленивые» частицы и могло удержать магнитное поле нашей Галактики, более энергичные давно уже успели ее покинуть и затеряться в безбрежных межгалактических просторах. Медленные же частицы ионизуют вещество слабо, и чтобы их заметить, нужны гигантские детекторы — в сотни, в тысячи раз больше существующих.

Сегодня много говорят об установке ДЮМАНД — глубоководном детекторе ливней, порождаемых слабо взаимодействующими частицами космического излучения. Это сложная система фотоумножителей, которая фиксирует едва уловимые световые импульсы, сопровождающие прохождение ливня частиц в морской воде. Размеры ДЮМАНДа — около кубического километра. Подумать только — куб с ребром в один километр! Оттого и предложено разместить эту сверхгигантскую установку в толще океана. На суше это было бы просто невозможно. Но даже ДЮМАНДа недостаточно, чтобы уловить слабое свечение, вызываемое сверхтяжелыми монополями.

Так обстоит дело со сверхтяжелыми магнитными частицами. Умеренно тяжелые монополи, которые предсказывает теория электрослабого взаимодействия, обнаружить еще труднее. Если они и существуют в природе, их концентрация по сравнению со сверхтяжелыми должна быть значительно меньше, и вот почему. Многие нейтронные звезды обладают сильным магнитным полем. Такое поле должно притягивать и разгонять падающий на звезду монополь до энергии, в сотни миллионов раз превышающей ту, которую можно получить в самых мощных современных ускорителях. Этой энергии достаточно, чтобы породить в плотном нейтронном веществе звезды интенсивный каскад новых монополей, которые, притягиваясь ее магнитными полюсами, будут компенсировать, «гасить» ее магнитное поле. А для этого, оказывается, достаточно всего лишь одного начального монополя. Наличие же у нейтронных звезд магнитных полей (астрофизики их наблюдают) свидетельствует как раз о том, что умеренно тяжелые монополи, предсказываемые теорией Полякова — Т’Хуфта, исключительно редки, настолько редки, что, по мнению некоторых ученых, за все время существования Земли вероятность ее столкновения хотя бы с одним космическим монополем не превысила нескольких шансов на миллион.

Поделиться:
Популярные книги

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Аргумент барона Бронина 2

Ковальчук Олег Валентинович
2. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 2

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

СД. Том 15

Клеванский Кирилл Сергеевич
15. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.14
рейтинг книги
СД. Том 15

Жена неверного маршала, или Пиццерия попаданки

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного маршала, или Пиццерия попаданки

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Оцифрованный. Том 1

Дорничев Дмитрий
1. Линкор Михаил
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Оцифрованный. Том 1

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Шаман. Похищенные

Калбазов Константин Георгиевич
1. Шаман
Фантастика:
боевая фантастика
попаданцы
6.44
рейтинг книги
Шаман. Похищенные

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4