Чтение онлайн

на главную - закладки

Жанры

Лаборатория химических историй. От электрона до молекулярных машин
Шрифт:

Растворитель для целлюлозы был найден в 1857 г. швейцарским химиком Э. Швейцером. Это было весьма необычное соединение, которое никогда и никем не рассматривалось в качестве растворителя – водный раствор комплексного соединения гидроксида меди с аммиаком [Cu(NH3)n](OH)2, n= 4 : 6 (диапазон в значении "n" указывает на то, что это комплекс переменного состава). Его получают растворением гидроксида меди Cu(OH)2 в водном аммиаке (нам его раствор известен как нашатырный спирт, который в медицине применяют при потере сознания). Целлюлоза растворяется в медно-аммиачном комплексе при комнатной температуре, затем раствор продавливается через фильеру в ванну с проточной водой. Медно-аммиачный комплекс вымывается, а полученное волокно по составу будет представлять собой исходную целлюлозу. Тем не менее при этом происходит некоторая трансформация, немного изменяется пространственное расположение звеньев полимерной молекулы,

а полученные волокна совсем не похожи на хлопковое волокно. Они имеют блестящую поверхность и внешне напоминают натуральный шелк, поэтому такое волокно стали называть медно-аммиачным шелком. Оно оказалось непрочным. В 1901 г. работы немецкого химика Ф. Тиле ознаменовали следующий этап в истории этого волокна: формование стали проводить с одновременной вытяжкой, благодаря чему участки полимерных цепей ориентировались вдоль оси волокна, что привело к заметному повышению прочности.

Все описанное выше – поиски растворителя, разрушающего водородные связи между цепями линейного полимера, ориентирование полимерного волокна в процессе формования – воспринимается на первый взгляд как обычная научная работа, опирающаяся на существующие представления о строении и свойствах полимеров. Удивительно, что в то время, когда проводились эти работы, науки о полимерах вообще не существовало: она появилась спустя несколько десятилетий. Соответственно, не было таких понятий, как макромолекула, линейный полимер, "обязанный" в чем-то растворяться, ориентирование полимерных звеньев. Помимо этого, еще даже не было установлено точное строение целлюлозы.

Можно только удивляться необыкновенной интуиции первых химиков-полимерщиков, сумевших настолько грамотно разработать весь процесс получения волокна, что в основных чертах он сохранился неизменным до наших дней.

Интересно, что разрушает водородные связи в целлюлозе не только реактив Швейцера, но и сжиженный аммиак (t кип. – 33,5 оС). Если опустить в него на некоторое время спичку или тонкий карандаш, то водородные связи частично разрушатся, поскольку аммиак свяжет атомы водорода гидроксильных групп в ионы аммония NH4+. В итоге дерево станет пластичным, и карандаш можно будет завязать узлом. При комнатной температуре жидкий аммиак быстро испарится, водородные связи восстановятся в деформированной древесине, которая вновь приобретет исходную жесткость. Естественно, такие опыты необходимо проводить в хорошем вытяжном шкафу с использованием резиновых перчаток: пары аммиака при вдыхании вызывают нестерпимую боль.

Был найден еще один способ растворения целлюлозы. Ученым пришлось пойти на небольшую хитрость: на промежуточном этапе химически модифицировали целлюлозу, чтобы ее растворить, а в процессе вытягивания нити удаляли модифицирующую группу и вновь получали исходную целлюлозу. Речь идет об известном процессе получения вискозного волокна. Измельченную древесину обрабатывают водным раствором NaOH, гидроксильные группы – ОН превращаются в – ONa. На следующей стадии применяют жидкий сероуглерод CS2 – это соединение практически является аналогом углекислого газа O=C=O, в котором атомы кислорода заменяются родственным элементом – серой S=C=S. Сероуглерод встраивается между атомами O и Na в группах -ONa (рис. 1.7).

Образуется вязкая водно-щелочная масса (вискоза, от лат. viscosus – "вязкий"), которую продавливают сквозь фильеру в ванну с серной кислотой. Ионы натрия переходят в раствор в форме сульфата, сероуглерод высвобождается и удаляется вместе с сернокислым раствором. Образовавшаяся шелковистая нить представляет собой чистую целлюлозу. Сам процесс в 1891 г. изобрели англичане Ч. Кросс, Э. Беван и К. Бидле, а через год они организовали производство вискозы. Она применяется для изготовления тканей, которые приятны в носке, не препятствуют нормальному воздухообмену, легко окрашиваются и образуют нежные драпировочные складки.

Из той же самой вискозной массы получают продукт, имеющий такой же состав, но внешне совсем не похожий на ткань. Это целлофан – шуршащая прозрачная пленка. Идея производить не волокно, а пленку пришла к швейцарскому химику Ж. Бранденбергеру: он искал способ защитить скатерть от грязных пятен. Он обработал хлопчатобумажную ткань вискозным сырьем, в результате скатерть огрубела и стала жесткой, а само покрытие легко отслоилось в виде прозрачной пленки. Бранденбергер понял, что получил новый пленочный материал – его производство он наладил через несколько лет. Вискозную массу продавливали не через фильеру с множеством отверстий, а через узкую щель. На какое-то время целлофан стал самым популярным упаковочным материалом, сейчас его вытеснил более дешевый полиэтилен. Однако, если проанализировать ситуацию, мы поймем, что это не самая удачная замена. Целлофан исключительно хорош для хранения пищевых продуктов: он позволяет "дышать" упакованному содержимому, надолго сохраняя его свежесть. Также целлофан легко утилизируется естественным образом – разлагается, что особенно актуально в современных условиях, когда остро встает вопрос утилизации отходов.

Подводя итог, отметим, что достоинства природного полимера – целлюлозы – были в полной мере оценены и умело использованы настойчивыми химиками-исследователями.

Когда

упорство выше знаний

Помимо описанных выше натуральной кожи и целлюлозы, существует еще один природный полимер, который человечество сумело успешно приспособить к своим нуждам. Это натуральный каучук (заимствование из французского языка: caoutchouc <индейск. каучу, сложение кау – "дерево" и учу – "течь". Каучук буквально – "сок, текущий из дерева" [1] ). Впервые каучук обнаружили в начале XVI в. участники экспедиции Христофора Колумба, прибывшие на Американский континент. Они увидели, что туземцы играют в мяч, сделанный из совершенно неизвестного материала. Мяч отскакивал от земли, легко сжимался и быстро восстанавливал свою первоначальную форму. Долгое время каучук, привезенный из Южной Америки, был просто заморской диковинкой.

1

Шанский Н. М., Боброва Т. А. Школьный этимологический словарь русского языка: Происхождение слов. – М.: Дрофа, 2004.

В 1735 г. французская экспедиция во главе с исследователем Ч. Кондамином установила, что каучук получают из млечного сока бразильской гевеи, который собирают, делая косые надрезы на коре и прикрепляя к дереву сосуд для сбора сока (рис. 1.8). Млечный сок (научное название – латекс) представляет собой эмульсию со взвешенными в воде мелкими каплями каучука. Содержание каучука – 34–37 %. При небольшом нагревании или действии органических кислот латекс "сворачивается" подобно тому, как створаживается нагретое скисшее молоко, и чистый каучук легко отделяется от воды. В 1738 г. Кондамин представил в Парижской академии наук образцы каучука и описание способов его получения в Южной Америке. Новое вещество вызвало научный интерес, однако единственное применение в 1770 г. нашел британский химик Джозеф Пристли – именно он был первооткрывателем кислорода (см. главу "Озарения, открытия, превратности судьбы", рассказ "Открытия не могло не быть"). Пристли обнаружил, что каучук может стирать написанное графитовым карандашом. Такой предмет мы называем ластиком. Попытки использовать каучук продолжил британский химик и изобретатель Чарльз Макинтош. Он поместил тонкий слой каучука между двумя слоями ткани и из этого материала стал шить водонепроницаемые плащи. В 1823 г. он организовал в Глазго мануфактурное производство водонепроницаемой одежды, и с тех пор непромокаемый плащ из прорезиненной ткани носит его имя.

Однако не путайте его с известными однофамильцами. Изначально Макинтоши были представителями древнего шотландского клана. В свое время в Северной Америке был выведен сорт яблок, ставший популярным и получивший название в честь создателя, Джона Макинтоша, а современная линейка персональных компьютеров Macintosh (Mac) корпорации Apple получила название от сорта яблок.

Впрочем, вернемся к прорезиненным плащам. Первые эксперименты оказались неудачными: зимой такие плащи становились твердыми от холода, а летом расползались от жары. Через год вся продукция превращалась в жидкое месиво и издавала отвратительный запах.

Устранить эти недостатки решился американский изобретатель-одиночка Чарльз Гудьир. Он не имел никакого образования и, естественно, никакого представления о том, из чего состоит натуральный каучук. Почему он полагал, что эта задача имеет решение? Может быть, ему что-то подсказывала интуиция, но скорее всего, его привели в изумление свойства каучука, который не имеет аналогов среди всех предметов окружающего нас мира. Он способен увеличивать свою длину в 6–8 раз и возвращаться в исходное состояние после снятия растягивающего усилия – впрочем, мы уже привыкли к каучуку и не удивляемся его высокоэластическим свойствам. Гудьир, вероятно, был поражен уникальными свойствами каучука и решил непременно найти ему применение. Он с фанатичным упорством вводил в каучук различные добавки. С помощью скалки для теста он смешивал с пластинками каучука все, что попадалось под руку: песок, соль, мел, перец, сахар, сыр, чернила, магнезию и даже суп, твердо веря, что решение задачи найдется. Поиски длились не один год. Среди добавок оказалась и порошкообразная сера, которой он припудривал образцы каучука, чтобы они не слипались. Один из образцов случайно оказался у нагретой печи, но не растекся, а сохранил форму. Гудьир, внимательно следивший за результатами экспериментов, мгновенно это заметил. Так в 1839 г. был открыт процесс, названный впоследствии вулканизацией, а полученный продукт стали называть резиной. Происхождение слова "вулканизация" очень романтичное – оно связано с именем древнеримского бога огня Вулкана, покровителя кузнецов и литейщиков. Это одно из знаменательных событий в истории полимерной химии. Слово "резина" означает на латыни просто "смола". Еще при жизни Гудьира в США, Англии, Франции и Германии начали строить заводы по производству резины. Его имя входит в название резинотехнической фирмы Goodyear Tire and Rubber (США), занимающей одно из ведущих мест в производстве шин. Самое удивительное, что найденный Гудьиром способ вулканизации дошел до наших дней практически без изменений, и серу до сих пор считают оптимальным вулканизатором.

Поделиться:
Популярные книги

Кризисный центр "Монстр"

Елисеева Валентина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Кризисный центр Монстр

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Весь Карл Май в одном томе

Май Карл Фридрих
Приключения:
прочие приключения
5.00
рейтинг книги
Весь Карл Май в одном томе

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Владыка морей ч.1

Чайка Дмитрий
10. Третий Рим
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Владыка морей ч.1

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота