Лаплас
Шрифт:
На средства Бертолле Аркейльское общество издало три тома научных трудов, в которых помещены работы Лапласа по физике. Общение ученых, работавших в разных областях, оказывало взаимное благотворное влияние. Свою интуицию и блестящее знание анализа Лаплас под влиянием общения с физиками приложил к некоторым вопросам этой науки. Но еще сильнее было его влияние на остальных членов общества. Они черпали у Лапласа методы исследования и разрабатывали вопросы, выдвигаемые им.
«Такое об'единение необходимо, – писал Лаплас, – когда успехи наук увеличивают число точек взаимного их соприкосновения и не позволяют одному человеку углублять все эти науки сразу. Науки требуют совокупных усилий многих ученых. Таким образом, физик находит в геометре содействие, чтобы возвыситься до наиболее общих причин наблюдаемых
Теория вероятностей
Апаго говорит: «Канцлер императорского Сената, получавший более 100 тысяч ливров годовой ренты, с неменьшим усердием, чем простой академик Лаплас, стремился увязать все неправильности и возмущения в движении светил с принципом всемирного тяготения, распространить метод математического анализа на явления земной физики и подчинить своим формулам явления общественной жизни, в которых обыватель видит тайну или слепой случай».
Этими словами Апаго напоминает о ряде работ Лапласа в области физики, выполненных им с 1808 по 1826 год, и о работах по математической теории вероятностей. Последние в виде прекрасной книги «Аналитическая теория вероятностей» вышли впервые в 1812 году. В 1814 году вышло второе издание этого замечательного труда, к которому в качестве предисловия был помещен «Опыт философии теории вероятностей», вышедший и отдельным изданием. В 1820 году вышло третье окончательное издание трудов Лапласа в этой области, снабженное расширенным предисловием и четырьмя дополнениями.
Теория вероятностей родилась из азартных игр, из стремления установить шансы на выигрыш в той или иной игре, в определенных условиях. Простейшая и наиболее известная игра, основанная на законе случая, – игра в «орла и решку». Если монета представляет собой совершенно правильный цилиндр с центром тяжести, совпадающим с ее геометрическим центром, то вероятность выпадения «орла» при одном бросании монеты такова же, как и для решки. Сумму вероятностей всех возможных событий в каком-либо явления принимают за единицу. Если какое-либо явление имеет вероятность, равную единице, то его надо считать достоверным, т. е. таким, которое обязательно произойдет и совершенно не подвержено случаю. Например, если ежедневный восход Солнца рассматривать с точки зрения его вероятности, основанной на непрерывном наблюдении явления, то вероятность того, что Солнце взойдет завтра, практически равна единице.
Понятие вероятности события, довольно ясное само по себе, в математической теории «случайных» явлений рассматривается как отношение числа шансов, благоприятствующих данному событию, к числу всех шансов.
В случае с монетой вероятность, что при бросании ее не выпадут ни «орел», ни «решка» равна нулю. Вероятность, что выпадет либо «орел», либо «решка», будет равна единице, – это будет достоверность.
В урне лежит сто шаров, из которых один черный, а остальные белые. Какова вероятность того, что, беря наудачу один шар, мы вынем именно черный? Ясно, что каждый шар имеет один шанс быть вынутым, а всего шансов в нашем примере – сто. Вероятность вынуть черный шар равна одной сотой, а вероятность вынуть белый шар равна девяносто девяти сотым, т. е. очень близка к единице, к достоверности. Может, конечно, случиться, что первый же вынутый шар будет черным, но наш математический расчет позволяет утверждать, что если подобный опыт будет продолжаться много
Астроном Галлей впервые составил таблицу смертности и этим положил начало статистике. Сочетание статистического материала и элементов теории вероятностей придало им характер подлинной математической науки, могущей иметь громадное практическое значение в самых разнообразных областях жизни.
Основные положения математической теории вероятностей, после ее пионеров – Паскаля и Ферма, были созданы Яковом Бернулли в самом начале XVIII века. Байес и Моавр несколько развили вопросы, рассмотренные Бернулли.
Когда Лаплас приступил к усовершенствованию теории вероятностей (первые попытки он делал еще двадцатилетним юношей), она находилась еще в довольно хаотическом состоянии, и методы, которыми она пользовалась, были элементарны; доказательства теорем получались недостаточно ясными и очень громоздкими.
Лаплас прежде всего пересмотрел эти методы и вместо них дал новые математические методы, внеся в них достижения современного ему анализа, в частности, используя разработанную им самим теорию особых «образующих» функций.
Этим Лаплас сделал свое изложение теории вероятностей простым, ясным и изящным.
Не ограничившись переработкой теории, Лаплас внес в нее много нового. Теорема, носящая его имя, точнее и шире теоремы Бернулли.
Лаплас развил ту отрасль теории вероятностей, которая носит название «Теория ошибок и способ наименьших квадратов» и без которой не может теперь обойтись ни один естествоиспытатель.
Не говоря уже о физико-математических науках, даже биология и физиология постоянно прибегают к содействию этой теории. Эмпирически построенная Лежандром и в особенности Гауссом, эта теория, обоснованная Лапласом, позволяет, например, вычислить точность результата тех или иных подсчетов и наблюдений, позволяет судить о степени достоверности каких-либо численных выводов. Лаплас и Гаусс впервые широко пользовались способом «наименьших квадратов» в вопросах небесной механики и в других.
В «Опыте философии теории вероятностей» Лаплас дает не только блестящее популярное изложение самой теории, но и крупную попытку философского обоснования ее положений и выводов. Тут же Лаплас излагает свои обширные соображения о применении теории вероятностей к явлениям социального характера, но мы их рассмотрим дальше, в связи с общей характеристикой мировоззрения ученого.
В предисловии к русскому переводу «Опыта философии теории вероятностей», изданному столетием позднее, профессор А. К. Власов говорит: «Никому теория вероятностей не обязана столько, сколько Лапласу. Его „Аналитическая теория вероятностей“ составляет своего рода „principia“ по этому предмету. Столетний возраст этого классического сочинения не умалил его значения».
Все физико-математические науки, статистика, биометрия, страхование жизни, страхование от пожаров, страхование грузов, экономика, транспорт, коммунальное хозяйство, словом, почти все отрасли науки, техники и широкой практики пользуются плодами трудов Лапласа в области теории вероятностей и математической статистики.
Теория капиллярности
В этот же период Лаплас уделял много времени вопросам теоретической физики, в частности, теории капиллярности или волосности.
Поднятие жидкости на большую высоту в капиллярных (волосных) трубках, играющее большую роль в физике и обусловливающее питание растений соками земли (посредством капилляров, заключенных между волокнами древесины), казалось довольно загадочным. В течение полутора столетий ученые тщетно пытались создать физическую теорию явления капиллярности, облеченную в математическую форму и согласную с данными наблюдений. Первую попытку создания аналитической теории сделал Клеро в 1743 году, но только Лапласу удалось достигнуть в этой теории известной законченности, сообщить ей истинно научную основу.