Лекции
Шрифт:
Если алюминиевая трубка призвана выполнять функцию экрана, то ее полезность ограничивается степенью откачки воздуха, когда она изолирована от электрода, то есть, когда газ в целом не проводник, и молекулы или атомы действуют как независимые отдельные носители зарядов.
В дополнение к работе в качестве эффективного экрана, в истинном понимании этого слова, токопроводящая трубка или покрытие могут также играть роль, по причине своей токопроводимости, компенсатора или демпфера во время бомбардировки стеклянной ножки. Предположим следующую ситуацию: при ритмической бомбардировке проводящей трубки, по причине ее несовершенства как экрана, обязательно должно случиться так, что некоторые молекулы или атомы ударят по трубке ранее других. Те, что ударятся первыми, отдадут свой избыточный заряд, и трубка наэлектризуется, причем электризация моментально распространится по ней. Но это должно уменьшить количество энергии, теряемой при бомбардировке по двум причинам: первая — заряд, отданный атомами, распространяется по большому участку поверхности, следовательно, электрическая плотность в любой точке уменьшается и атомы отталкиваются с меньшей энергией, чем если бы они ударились о хороший
То, что я сейчас сказал, может служить объяснением явлению, наблюдавшемуся профессором Круксом, а именно: разряд в колбе гораздо сильнее, когда в ней находится изолятор, а не проводник. По моему мнению, проводник служит демпфером для движущихся атомов двумя указанными способами, поэтому для того чтобы сформировать видимый разряд, требуется гораздо более высокий потенциал, если в колбе проводник, имеющий значительную площадь поверхности.
Для того чтобы разъяснить эти высказывания, я должен обратиться к рисункам 18, 19 и 20, на которых показаны различные конструкции широко применяемых ламп.
На рисунке 18 показана в разрезе сферическая лампа L со стеклянной ножкой 5, содержащей подводящий провод w, соединенный с нитью накаливания l, которая в свою очередь служит опорой для элемента накаливания т в центре лампы. М ~ это тонкая полоса слюды, в несколько слоев намотанная на ножку s, а а — это алюминиевая трубка.
На рисунке 19 показана такая же лампа, но уже усовершенствованная. Металлическая трубка S приклеена к горловине трубки. В самой трубке укреплена пробка Р, изготовленная из изоляционного материала, по центру которой проходит металлический вывод / для соединения с подводящим проводом w. Этот вывод должен быть хорошо изолирован от металлической трубки S, следовательно, если клей токопроводящий, — а в большинстве случаев так и бывает, — то пространство между пробкой Р и горловиной колбы надо заполнить хорошим изолятором, например слюдяным порошком.
На рисунке 20 показана лампа, изготовленная в экспериментальных целях. В этой лампе алюминиевая трубка снабжена внешним выводом для изучения поведения колпачка в различных условиях. О ней пойдет речь при описании дальнейших опытов.
Поскольку бомбардировка ножки, по которой проходит подводящий провод, происходит благодаря индуктивному воздействию провода на разреженный газ, было бы полезным уменьшить величину воздействия в практичных пределах, применив тонкий провод, изолированный толстым слоем стекла или другого материала, и как можно более сократить ту часть провода, которая проходит сквозь газ. Для выполнения этих условий я применил большую трубку Т (рисунке 21), которая немного выступает внутрь колбы, и имеет на вершине очень короткую стеклянную ножку s, в которой запаян подводящий провод w, а верхнюю часть ножки я защитил от нагревания небольшой алюминиевой трубкой а, а под ним слоем слюды, как обычно. Провод w, выходящий наружу сквозь большую трубку, должен быть хорошо изолирован, например стеклянной трубкой, а пространство внутри следует заполнить каким-либо отличным изолятором. Из всех изолирующих порошков, которые я испробовал, наилучшим является слюдяной. Если не принять эту меру предосторожности, то трубка Т, выступающая внутри колбы, непременно треснет вследствие нагрева кистевым разрядом, который имеет тенденцию появляться в верхней части трубки, там, откуда откачан воздух, в особенности, если вакуумирование высокое, и, следовательно, необходимый для работы лампы потенциал очень высок.
На рисунке 22 показана подобная конструкция, где большая трубка Т выступает внутрь колбы и несет элемент накаливания пг. В данном случае подводящий провод снаружи внутрь колбы отсутствует, а энергия поступает с покрытий конденсатора СС. При такой конструкции изолятор Р должен плотно прилегать к стеклу и быть довольно толстым, в противном случае разряд может миновать провод w, который соединяет внутреннюю пластину конденсатора с элементом накаливания т.
Молекулярная бомбардировка стеклянной ножки внутри колбы доставляет много неприятностей. Для примера я опишу явление, которое наблюдал часто и с большим неудовольствием. Можно взять колбу, лучше большую, и хороший проводник, например угольный, укрепить его внутри на платиновом проводе в стеклянной ножке. Из колбы можно откачать воздух, довольно сильно, когда появляется свечение. Когда лампу подключают к катушке,
Конечно, необязательно, когда требуется накалить заключенное в колбу тело при помощи таких токов, чтобы оно было проводником, так как даже и совершенный изолятор может быстро накаляться. Для этого достаточно обернуть электрод изолирующим материалом, как, например, в лампе, показанной на рисунке 21, где тонкая нить накаливания обернута изолятором и поддерживает элемент такого же материала на своей верхушке. В начале бомбардировка идет за счет индукции через диэлектрик до тех пор, пока он не нагреется достаточно для того, чтобы стать проводником, и тогда бомбардировка продолжается как обычно.
В лампах, сконструированных, как показано на рисунке 23, применяется другой метод. В данном случае диэлектрик т укреплен на некотором расстоянии над угольным элементом. Угольный элемент соединен с подводящим проводом, который проходит сквозь стеклянную ножку, обернутую в несколько слоев слюды. Алюминиевая трубка а, как обычно, применяется для экранирования. Она устроена так, чтобы выступать на высоту угольного элемента и только диэлектрик т возвышается над ней. Бомбардировке в начале подвергается верхняя часть угольного элемента, а нижнюю часть защищает алюминий. Однако, как только диэлектрик т нагревается, он становится хорошим проводником и тогда превращается в центр бомбардировки, так как он более всего открыт для нее.
Во время таких опытов я сконструировал много ламп с одним проводом или без внутреннего электрода, в которых излучение проецировалось или фокусировалось на элементе накаливания. На рисунке 24 показана одна из таких ламп. Она состоит из сферической колбы L, у которой есть длинная горловина п сверху для усиления действия в некоторых случаях при помощи внешнего проводникового покрытия. Колба L внизу имеет небольшую круглую головку Ъ, которая служит для того, чтобы крепко ее удерживать в гнезде S, изготовленном из изоляционного материала, куда колба вклеена. Тонкая нить накаливания f, соединенная с проводом w проходит через центр колбы L. Нить накаляется в середине, где бомбардировка, исходящая снизу, наиболее интенсивна. Нижняя часть колбы до того уровня, куда достает край гнезда S, сделана токопроводящей при помощи фольги или чего-то подобного, а внешний электрод соединен с выводом катушки. Конструкция, показанная на рисунке 24, оказалась несовершенной для накаливания нити или элемента накаливания, находившихся в центре колбы, но хорошо работала, когда стояла цель — получить свечение.
Во время многих опытов, когда различные предметы устанавливались в колбах, как например, на рисунке 23, были сделаны интересные наблюдения.
Помимо прочего выяснилось, что независимо от того, где начиналась бомбардировка, как только достигалась высокая температура, оказывалось, что один предмет принимает на себя основную часть ударов, а другой предмет или другие предметы были разгружены. Это качество зависит в основном от точки плавления и от способности тела к «испарению» или к расщеплению — под последним термином понимается не только испускание атомов, но и распад на более крупные частицы. Это наблюдение соответствовало общепринятым понятиям. В колбе, откуда почти полностью откачан воздух, электричество истекает от электрода при помощи независимых носителей, которыми могут быть атомы и молекулы остатков воздуха, а могут быть атомы, молекулы и более крупные частицы самого электрода. Если электрод состоит из материалов различного характера и один из этих материалов более подвержен распаду, чем остальные, то по большей части носители тока происходят от этого материала, который легче нагревается, а, нагреваясь быстрее, быстрее и распадается.