Личность и Абсолют
Шрифт:
Имея все это в виду, можно сказать, что в конце концов из всех моментов определения понятия группы только первые два остаются совершенно необходимыми—это однозначность композиции и принадлежность ее результата к общей совокупности.
3. а) Рассмотрим еще один пример группы—пример, который, однако, имеет для всей теории групп первостепенное значение, так что это даже не пример, а скорее общий метод представления всякой группы вообще. Это именно группа подстановок. Кстати, она теснее свяжет наше изложение с тем, что говорилось вначале относительно дедукции группы вообще.
Мы уже знаем, что такое перестановки. Чтобы получить одну перестановку из другой, надо произвести известную подстановку. Ясно, что всех возможных подстановок чисел столько же, сколько возможно всех их перестановок. Из трех элементов, как известно, возможны шесть перестановок:
123 123 1 23 123 123
132 321 213 231 312.
Их мы можем
916
В рукописи: перестановки.
b) Часто случается, что, изучая разные предметы, мы замечаем, как они при всей своей несхожести выражаются одной и той же группой, для которой существует, таким образом, только одна таблица Кэли. Такие группы называют изоморфными или, точнее, одноступенно–изоморфными. Другими словами, если элементы двух групп можно расположить так, что если A iA k= A l, то и BiB k=B hто эти группы изоморфны. И вот в теории групп доказывается теорема: всякая отвлеченная группа изоморфна некоторой группе подстановок. Это сразу видно из таблицы Кэли, в которой каждая строка содержит как раз все элементы группы, а переход от одной строки к другой есть только перестановка этих элементов. Если так, то отсюда мы получаем некоторый универсальный метод исчерпывающего представления любой группы, который к тому же замечательно прост и удобен (хотя простота эта скорее теоретическая, а не практическая). Если мы вспомним вышеприведенный пример с вращением равностороннего треугольника, где этих вращений было именно шесть, то эту же самую группу мы можем представить как группу подстановок трех вершин треугольника А, В, С:
Так же можно представить и приводившуюся группу шести рациональных функций (представляющую, кстати сказать, группу значений ангармонического отношения [917] четырех точек на прямой при всевозможных их перестановках).
c) Но обратим внимание на то, как мы «перемножаем» подстановки. Тут полная аналогия с «умножением» матриц. Можно поэтому всякую группу представить матрично; всякая группа есть в известном смысле группа матриц. Возвращаясь к нашему примеру группы шести рациональных функций, мы можем представить ее изоморфно в матрицах второго порядка так:
917
Ангармоническое (или сложное, или двойное) отношение четырех точек 1, М 2, М 3, М 4на прямой—это число, равное
То же в виде матриц третьего порядка так:
соответственно таблице Кэли:
Тут мы возвращаемся к данной вначале диалектической дедукции группы из детерминантно–матричных отношений. Ряд матриц связан здесь единым композиционным принципом, скользящим
d) Это делается еще яснее, когда мы стараемся осознать обычно практикуемый в теории групп метод циклического представления. Циклом называется такая подстановка, в которой каждый знак заменяется следующим за ним, а последний—первым. При этом совершенно неважно, с какого знака начинать, лишь бы сохранялся указанный порядок. Ничто не мешает и всякую подстановку расположить так, чтобы смена знаков происходила последовательно, как указано только что; или, точнее, всякая подстановка может быть представлена как произведение циклов, не имеющих общих элементов. Следовательно, всякая подстановка, т. е. всякая группа, в этом смысле циклична, и притом однозначно–циклична. Но циклическое расположение наилучше рисует тот момент в композиции группы, который мы именуем выразительно–становящимся. Цикличность по самому своему смыслу есть нечто становящееся. Поэтому она и отражает в себе наилучше выразительную природу группы. Ведь выражение есть именно фигурно–становящаяся, текучая сущность.
e) Наконец, важно знать еще и то, что полная группа всех возможных подстановок данного числа знаков обладает одним специальным свойством. Именно, если под степенью группы понимать число знаков, участвующих в подстановках, то все подстановок знаков образуют т. н. симметрическую группу n–й степени. Такова, напр., тройная группа, приведенная выше в виде таблицы Кэли, или четверная, которую еще рельефнее можно выразить так:
Мы видим здесь замечательную симметрию знаков относительно обеих диагоналей таблицы. В теории групп доказывается, что симметрическая группа содержит
4. До сих пор мы занимались, собственно говоря, только определением понятия группы, мало входя в рассмотрение ее структуры в собственном смысле. Но развитое выше понятие группы со всеми его подробностями в отношении структуры самой группы есть только перво–принцип. Поэтому развитая структура группы должна быть рассматриваема еще с весьма многочисленных точек зрения. Укажем некоторые понятия из теории групп, относящиеся к структуре группы.
a) Структура группы в ее принципе (а не перво–принципе), в ее бытии характеризуется различным комбинированием входящих в нее элементов. Введем необходимейшее понятие подгруппы. Это та группа, все элементы которой входят в другую группу; в отношении последней она и называется подгруппой. Структура группы выявляется проще всего при помощи разложения по модулю. Если подгруппа J, то имеется известное количество элементов А, Б, С, … J таких, что J=MA+MB+MC+ …+MJ. Это значит, что мы компонируем последовательность элементов, составляющих подгруппу со всеми элементами, входящими в но не входящи[ми] в М. Такое комбинирование называется разложением группы J по модулю М, а всякая система элементов А, В,… J называется полной системой вычетов по модулю М. Тут полная аналогия со структурой модуля в узком смысле (т. е. когда композицией является сложение и вычитание), о котором нам уже приходилось упоминать (п. 2а) и о котором еще будет речь в § 126.
Впрочем, если гнаться за диалектической точностью, то к «бытию», или «принципу», структуры группы относится не разложение по модулю, а самый модуль, потому что только он и есть идеальная картина разложения. Самое же разложение, т. е. реальное разложение, предполагает уже некое становление бытия (или принципа), и закон этого становления выражен именно полной системой вычетов. Таким образом, полная система вычетов есть позднейшая стадия; она не только не самое бытие, но даже и не самое становление; она—закон становления, т. е. ставшее.
На основании теоремы Лагранжа о том, что порядок любой подгруппы есть делитель порядка группы, определяют структуру низших групп. Так, нетрудно найти, что групп четвертого порядка—две. Поскольку 5 и 7—простые числа (а известно, что группа, порядок которой есть простое число, может быть только циклической), то для порядков 5 и 7 получается только один тип, циклическая группа. Для группы 6–го порядка возможны: 1) циклическая группа, образованная одним элементом 6–го порядка; 2) если же она не циклическая, то ее элементы могут быть 2–го или 3–го порядка, причем все не могут быть 2–го порядка. И т. д.