Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
Шрифт:
Однако не все так просто: в этой системе становятся необычайно сложными операции сложения и умножения. Доказано, что при переходе к нестандартной математике с гипервещественными числами либо сложение, либо умножение становится таким же сложным, как операции математического анализа – интегрирование и дифференцирование – в нашей традиционной математике. При этом, работая в новой нестандартной математике, нельзя схитрить и использовать для сложения и умножения традиционную математику, потому что никогда не знаешь, окажутся ли числа, которыми мы оперируем, вещественными или гипервещественными.
В некоторых научно-фантастических произведениях утверждается, что человечество сможет использовать математику, чтобы убедить какую-нибудь внеземную цивилизацию в своей разумности. Но что, если математика, которую разработала эта
Если бы такой внеземной цивилизации с ее внеземной математикой удалось создать некую технологию, недостижимую для нас, – например, машину времени, – то мы почти наверняка сочли бы ее чудом. Если возможности математики, обеспечившие возможность такого изобретения, были бы для нас непостижимы, они казались бы нам волшебством. С другой стороны, возможно, что наши инопланетяне, которым мешала бы сложность сложения и умножения, так и не открыли бы законов электричества. Вполне может быть, что обычный электромотор казался бы им настоящим чудом.
Вернемся к нашей Фиби с ее винтовкой и посмотрим, как она могла бы использовать эту новую систему чисел. Ограничиваясь традиционными вещественными числами (как целыми, так и нецелыми), мы можем выразить все возможные результаты выстрела из винтовки в реальном мире. Но если мы расширим свой горизонт, включив в рассмотрение и гипервещественные числа, то у каждого выстрела появятся новые возможности. Например, пуля может попасть в гиперудаленную точку, находящуюся на расстоянии I + 3 км от середины стены, хотя вероятность такого попадания может быть выражена бесконечно малым числом порядка 1/I. Однако следует отметить, что эта вероятность не будет нулевой: число 1/I заведомо не равно нулю. Оно больше нуля, хотя и меньше любого положительного вещественного числа. Поэтому мы в некотором смысле можем считать такую вероятность «практически» нулевой. Допустив в свою среду гипервещественные числа, мы начинаем получать результаты столь необычайно редкие, что предвидеть их появление мы никак не можем. Тем не менее они могут появляться, и, если это происходит, такой результат совершенно не похож на результат обычного, повседневного выстрела. Тем из нас, кто вырос на традиционных вещественных числах, такой выстрел, возможность существования которого обеспечивает теорема Гёделя, покажется самым настоящим чудом.
Гёдель, Эйнштейн и фон Нейман
Описывая Джона фон Неймана, историк науки Джейкоб Броновски сказал: «Он был самым умным из известных мне людей, безо всякого исключения. Он был гением» [38] . Еще когда фон Нейман учился в Будапеште, в легендарной лютеранской гимназии Фашори, товарищи по учебе знали, что он гений, – а сами они тоже были людьми незаурядными. Из этой школы вышли всемирно известные ученые, в том числе Юджин Вигнер, Джон Харсаньи и Эдвард Теллер. Фон Нейман умер рано, всего лишь в пятьдесят три года, оставив после себя новаторские работы по самым разным предметам, в том числе по архитектуре вычислительных систем, квантовой механике и теории игр. За годы, прошедшие после его смерти, пять человек получили Нобелевские премии по экономике за результаты, достигнутые в области теории игр, а еще десять или двенадцать Нобелевских премий были присуждены экономистам, применившим математические методы, которые разработал фон Нейман.
38
См.com/2007/05/ johnny-von-neumann-jacob-bronowki. html.
Фон
Фон Нейман спросил Эйнштейна, какое жалованье тот думал просить, Эйнштейн скромно сказал, что, по его мнению, он может стоить несколько тысяч долларов в год. Тогда фон Нейман велел Эйнштейну исчезнуть на несколько дней и за это время выбил для него годовую зарплату $18 000.
Эйнштейн с Гёделем часто проводили дни напролет в лесах, окружающих Принстон. Иногда к ним присоединялся фон Нейман или кто-нибудь другой из ученых, но чаще всего они были вдвоем. На одной из таких прогулок никто из них не произнес за день ни слова, а когда они вернулись домой, каждый сказал жене, что у них состоялась в высшей степени увлекательная беседа. Оказывается, молчать тоже не все равно с кем.
Был ли фон Нейман гением? Большинство математиков, вероятно, сказало бы, что был. Его необычайный талант можно проиллюстрировать конкретным примером. В 1940-х годах в математическом фольклоре появилась одна весьма непростая задача: какой толщины должна быть монета, чтобы, будучи подброшена, она с равной вероятностью падала орлом, решкой и ребром? Ясно, что обычные монеты очень редко остаются стоять на ребре после броска, но по мере увеличения толщины монеты вероятность такого события должна возрастать. Представим себе монету в форме высокой консервной банки – такая монета оказывалась бы на ребре гораздо чаще, чем орлом или решкой кверху. Поэтому где-то между толщиной обычной монеты и толщиной консервной банки должна существовать золотая середина – толщина, при которой монета остается на ребре или оборачивается при падении орлом или решкой с точно равной вероятностью. Где же она?
Я столкнулся с этой задачей на третьем курсе математического факультета. Очевидное решение требует использования математического анализа, но расчеты получаются очень трудоемкими: у меня лично на вычисление всех необходимых интегралов ушло добрых две недели. (Ответ, к слову, получается такой: отношение толщины монеты к ее диаметру должно быть равно 0,354.) Существует легенда, что на одной вечеринке в Соединенных Штатах эту задачу предложили фон Нейману. Выслушав ее условия, он где-то на полминуты уставился в пространство, а затем объявил ответ. Бывшие на вечеринке гости пришли в сильное волнение: они были уверены, что Джонни фон Нейман нашел какое-то изящное решение этой задачи, которое смогут понять даже люди, далекие от математики. Затаив дыхание, они спросили его: «Джонни, как ты это сделал?» На что фон Нейман бесхитростно ответил: «Ну, я просто взял интегралы».
Как и Гаусс, фон Нейман не был гением в смысле нашего определения; я бы назвал его человеком необычайно талантливым. Его разум можно сравнить со случаем, в котором Фиби поворачивается почти параллельно стене и стреляет почти невообразимо далеко – но только почти. Его почти невообразимо быстрое вычисление интегралов есть проявление ума, способного чрезвычайно быстро делать обычные вещи, а не ума, порождающего идеи, бывшие до того непредставимыми. Возможно, сам фон Нейман был о себе того же мнения; он считал Гёделя и Эйнштейна умнее себя. Заметим, однако, что история о зарплате Эйнштейна говорит о том, что с точки зрения повседневного здравого смысла фон Нейман был гораздо сообразительнее. С другой стороны, у Гёделя и Эйнштейна, которые были гениями по любым стандартам, возникали такие идеи, какие никогда не приходили в голову фон Нейману. Еще одно доказательство ума фон Неймана состоит в том, что он одним из первых среди математиков осознал масштаб теоремы Гёделя и немедленно оставил свои исследования в области математической логики.
Истинная со скидкой для дракона
Любовные романы:
любовно-фантастические романы
рейтинг книги
Герцог и я
1. Бриджертоны
Любовные романы:
исторические любовные романы
рейтинг книги
На границе империй. Том 9. Часть 5
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Росток
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
рейтинг книги
Демон
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
рейтинг книги
Огромный. Злой. Зеленый
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
рейтинг книги
Тайны ордена
6. Девятый
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
Кодекс Охотника. Книга VI
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Неудержимый. Книга XXI
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Возлюби болезнь свою
Научно-образовательная:
психология
рейтинг книги
