Логика: учебник для юридических вузов
Шрифт:
Отношение между классом (множеством) и подклассом (подмножеством) является отношением включения и выражается при помощи символа : А В. Это выражение читается: А является подклассом В. Так, если А — следователи, а В — юристы, то А будет подклассом класса В.
Классы (множества) состоят из элементов. Элемент класса — это предмет, входящий в данный класс. Так, элементами множества высших учебных заведений будут Московский государственный университет им. М. В. Ломоносова, Московская государственная юридическая академия и т. д.
Отношение элемента к классу выражается при помощи символа : А
Если, например, А — юрист Иванов, а В — юристы, то А будет элементом класса В.
Различают универсальный класс, единичный класс и нулевой, или пустой, класс.
Класс, состоящий из всех элементов исследуемой области, называется универсальным классом (например, класс планет Солнечной системы). Если класс состоит из одного элемента, то это будет единичный класс (например, планета Юпитер); наконец, класс, который не содержит ни одного элемента, называется нулевым (пустым) классом (например, вечный двигатель). Число элементов пустого класса равно нулю.
Универсальный класс обусловлен предметной областью, т. е. множеством предметов, относящихся к какой-либо определенной сфере научной или практической деятельности, например, правовые отношения, следственные действия, Солнечная система. Границы предметной области относительны, они могут охватывать как все предметы материального или идеального мира, так и его отдельные части.
К нулевым (пустым) классам относятся логически противоречивые понятия, включающие в свое содержание несовместимые признаки. К ним относятся: «круглый квадрат», «горячий лед», «родной сын бездетной матери» и т. п. Это логически пустые понятия.
Иногда выделяют фактически пустые понятия. К ним относят классы, объем которых составляют предметы, не существующие в реальном мире: черт, леший, Баба Яга. Однако, являясь пустыми для предметной области реальных предметов, они не могут рассматриваться как пустые в предметной области сказок. Не являются пустыми многие научные абстракции, наделенные признаками, которые не существуют и не могут существовать в действительности: идеальный газ, абсолютно твердое тело, плоскость, линия, точка и многие другие понятия, имеющие важное значение для науки.
Закон обратного отношения между объемом и содержанием понятия. Содержание и объем понятия тесно связаны друг с другом. Эта связь выражается в законе обратного отношения между объемом и содержанием понятия, который устанавливает, что увеличение содержания понятия ведет к образованию понятия с меньшим объемом, и наоборот.
Так, увеличивая содержание понятия «государство» путем прибавления признака «современный», мы переходим к понятию «современное государство», имеющему меньший объем. Увеличивая объем понятия «учебник по теории государства и права», исключаем признаки, характеризующие учебник по данной дисциплине, переходим к понятию «учебник», имеющему меньшее содержание.
Подобное же отношение между объемом и содержанием имеет место в понятиях «преступление» и «преступление против личности» (первое понятие шире по объему, но уже по содержанию), «генеральный прокурор» и «прокурор», где первое понятие уже по объему, но шире по содержанию.
Закон обратного отношения между объемом и содержанием понятия лежит в основе логических операций, которые будут рассмотрены в гл. III.
1. Что такое содержание и объем понятия?
2. Что называется логическим классом (множеством), подклассом (подмножеством), элементом класса?
3. Какие классы называются универсальными, единичными, нулевыми (пустыми)?
4. Какой логический
§ 4. ВИДЫ ПОНЯТИЙ
Понятия (классы) делятся на пустые и непустые. О них шла речь в предыдущем параграфе. Рассмотрим виды непустых понятий. По объему они делятся на: 1) единичные и общие, (последние — на регистрирующие и нерегистрирующие); по типу обобщаемых предметов — на 2) собирательные и несобирательные, 3) конкретные и абстрактные; по наличию или отсутствию признака — на 4) положительные и отрицательные; по отношению к другому понятию на 5) безотносительные и соотносительные.
1. Понятия делятся на единичные и общие в зависимости от того, мыслится в них один элемент или множество элементов. Понятие, в котором мыслится один элемент, называется единичным (например, «столица Российской Федерации», «автор романа «Война и мир»», «потерпевший Щукин». Понятие, в котором мыслится множество элементов, называется общим (например, «столица», «писатель», «потерпевший»).
Общие понятия делятся на регистрирующие и нерегистрирующие. Регистрирующими называются понятия, в которых множество мыслимых в нем элементов поддается учету, регистрируется (во всяком случае, в принципе). Например, «участник Великой Отечественной войны 1941—1945 гг.», «родственники потерпевшего Шилова», «планета Солнечной системы». Регистрирующие понятия имеют конечный объем.
Общее понятие, относящееся к неопределенному числу элементов называется нерегистрирующим. Так, в понятиях «человек», «следователь», «указ» множество мыслимых в них элементов не поддается учету: в них мыслятся все люди, следователи, указы прошлого, настоящего и будущего. Нерегистрирующие понятия имеют бесконечный объем.
2. Понятия делятся на собирательные и несобирательные. Понятия, в которых мыслятся признаки некоторой совокупности элементов, составляющих единое целое, называются собирательными. Например, «коллектив», «полк», «созвездие». Эти понятия отражают множество элементов (членов коллектива, солдат и командиров полка, звезд), однако это множество мыслится как единое целое. Содержание собирательного понятия нельзя отнести к каждому отдельному элементу, входящему в его объем, оно относится ко всей совокупности элементов. Например, существенные признаки коллектива (группа лад, объединенных общей работой, общими интересами) неприложимы к каждому отдельному члену коллектива. Собирательные понятия могут быть общими («коллектив», «полк», «созвездие») и единичными («коллектив нашего института», «86-й стрелковый полк», «созвездие Большой Медведицы»),
Понятое, в котором мыслятся признаки, относящиеся к каждому его элементу, называется несобирательным. Таковы, например, понятия «звезда», «командир полка», «государство».
В процессе рассуждения общие понятия могут употребляться в разделительном и собирательном смысле.
Если высказывание относится к каждому элементу класса, то такое употребление понятия будет разделительным; если же высказывание относится ко всем элементам, взятым в единстве, и неприложимо к каждому элементу в отдельности, то такое употребление понятия называется собирательным. Например, высказывая мысль «Студенты 1-го курса изучают логику», мы употребляем понятие «студенты 1-го курса» в разделительном смысле, так как данное утверждение относится к каждому студенту 1-го курса. В высказывании «Студенты 1-го курса провели теоретическую конференцию» утверждение относится ко всем студентам 1-го курса в целом. Здесь понятие «студенты 1-го курса» употребляется в собирательном смысле. Слово «каждый» к данному суждению неприложимо.