Логика. Учебное пособие. Издание 2-е
Шрифт:
Значит, теорема верна.
Сложная конструктивная дилемма:
Если А, то В.
Если С, то Д.
А или С.
В или Д.
Например: «Если будет дождь, мы пойдем в кино; если будет холодно, пойдем в театр; будет дождь или будет холодно; следовательно, мы пойдем в кино или пойдем в театр».
Простая деструктивная (отрицающая) дилемма:
Если А, то В.
Если А, то С.
Неверно В или неверно С.
Неверно А.
Например: «Если число делится на 6, то оно делится на 3; если число делится на 6, то оно делится на 2; рассматриваемое число не делится
Сложная деструктивная дилемма:
Если А, то В.
Если С, то Д.
Не-В или не-Д.
Не-А или не-С.
Например: «Если поеду на север, то попаду в Тверь; если поеду на юг, то попаду в Тулу; но не буду в Твери или не буду в Туле; следовательно, не поеду на север или не поеду на юг».
Этот закон можно передать так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или, короче: высказывание, вытекающее из своего собственного отрицания, истинно.
Если неверно, что А, то А.
А
Например: если условием того, чтобы машина не работала, является ее работа, то машина работает.
Закон назван именем Клавия – ученого-иезуита, жившего в XVI в., одного из создателей григорианского календаря. Клавий обратил внимание на этот закон в своем комментарии к «Началам» Евклида. Одну из своих теорем Евклид доказал из допущения, что она является ложной.
Закон Клавия лежит в основе рекомендации, касающейся доказательства: если хочешь доказать А, выводи А из допущения, что верным является не-А. Например, нужно доказать утверждение «Трапеция имеет четыре стороны». Отрицание этого утверждения: «Неверно, что трапеция имеет четыре стороны». Если из этого отрицания удается вывести утверждение, то последнее будет истинно.
В романе И.С.Тургенева «Рудин» есть такой диалог:
– Стало быть, по-вашему, убеждений нет?
– Нет – и не существует.
– Это ваше убеждение?
– Да.
– Как же вы говорите, что их нет? Вот вам уже одно на первый случай.
Ошибочному мнению, что никаких убеждений нет, противопоставляется его отрицание: есть по меньшей мере одно убеждение, а именно убеждение, что убеждений нет. Отсюда следует, что убеждения существуют.
К закону Клавия близок по своей логической структуре другой закон, отвечающий этой же общей схеме: если из утверждения вытекает его отрицание, то последнее истинно. Например, если условием того, что поезд прибудет вовремя, будет его опоздание, то поезд опоздает. Схема этого рассуждения такова:
Если А, то не-А.
Не-А.
Эту схему однажды использовал древнегреческий философ Демокрит в споре с софистом Протагором. Последний утверждал: «Истинно все то, что кому-либо приходит в голову». На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания: «Не все высказывания истинны». И, значит, это отрицание, а не положение Протагора на самом деле истинно.
4. О так называемых законах логики
В
С развитием математической логики это направление в логике, путающее ее с поверхностно понятой методологией и пронизанное психологизмом, постепенно захирело.
Отголоском идеи «расширенной» логики является, в частности, разговор о так называемых основных законах мышления, или основных законах логики.
Согласно этой «широкой» трактовке логики основные законы – это наиболее очевидные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Они образуют как бы фундамент логики, на который опирается все ее здание. Сами же они ниоткуда не выводимы, да и не требуют никакой опоры в силу своей исключительной очевидности.
Под это до крайности расплывчатое понятие основных законов можно было подвести самые разнородные идеи. Обычно к таким законам относили закон противоречия, закон исключенного третьего и закон тождества. Нередко к ним добавляли еще закон достаточного основания и принцип «обо всех и ни об одном».
Согласно последнему принципу, сказанное обо всех предметах какого-то рода верно и о некоторых из них и о каждом в отдельности; неприложимое ко всем предметам неверно также в отношении некоторых и отдельных из них.
Действительно, это так. Но совершенно непонятно, какое отношение имеет эта истина к основаниям логики. В современной логике это один из бесконечного множества ее законов.
Закон достаточного основания вообще не является принципом логики – ни основным, ни второстепенным. Он требует, чтобы ничто не принималось просто так, на веру. В случае каждого утверждения следует указывать основания, в силу которых оно считается истинным. Разумеется, это никакой не закон логики. Скорее всего это некоторый методологический принцип, не особенно ясный, но в общем небесполезный.
Закон тождества, как он толковался в «расширенной» логике, тоже имел только отдаленное сходство с соответствующим логическим законом. В процессе рассуждения значения понятий и утверждений не следует изменять. Они должны оставаться тождественными самим себе, иначе свойства одного объекта незаметно окажутся приписанными совершенно другому. Чтобы этого не случилось, надо выделять обсуждаемые объекты по достаточно устойчивым признакам.
Требование не изменять и не подменять значения в ходе рассуждения является, конечно, совершенно справедливым. Но столь же очевидно, что оно не относится к законам логики.