Логика. Учебное пособие. Издание 2-е
Шрифт:
Условное утверждение в логике называется импликацией.
Классическая логика так истолковывает условное утверждение «Если А, то В»: оно ложно только в том случае, когда А истинно, а В ложно, и истинно во всех остальных случаях. Оно истинно, в частности, когда А ложно или когда В истинно. Содержательная, смысловая связь утверждений А и В при этом во внимание не принимается. Если даже они никак не связаны друг с другом, составленное из них условное утверждение может быть истинным.
Так истолкованное условное утверждение получило название материальной импликации. Согласно ее определению, истинными должны считаться такие, к примеру, утверждения: «Если Луна обитаема, то дважды два равно четырем», «Если
Прежде всего эта импликация плохо выполняет функцию обоснования. Вряд ли являются в каком-либо разумном смысле обоснованиями такие утверждения, как: «Если Наполеон умер на Корсике, то закон Архимеда открыт не им», «Если медь – египетское божество, она электропроводна». Нельзя сказать, что, поставив перед истинным утверждением произвольное высказывание, мы тем самым обосновали это утверждение. Классическая же логика говорит: истинное утверждение может быть обосновано с помощью любого утверждения.
Трудно отнести к обоснованиям и такие истинные материальные импликации, как: «Если львы не имеют зубов, то у жирафов длинные шеи», «Если дважды два равно пяти, то Юпитер обитаем» и т.п. Однако классическая логика говорит: с помощью ложного утверждения можно обосновать все, что угодно.
Эти и подобные им положения об обосновании, отстаиваемые классической логикой, получили название парадоксов материальной импликации. Они не согласуются с привычными представлениями относительно обоснования одних утверждений с помощью других.
Таким образом, классическая логика не может быть признана удачным описанием логического следования. Первым на это указал еще в 1912 г. американский логик К. Льюис. Тогда логика находилась на подъеме, она казалась безупречной, и критика Льюиса в ее адрес не была воспринята всерьез. Его даже обвинили в непонимании существа дела. Но он продолжал заниматься этой проблемой и предложил новую теорию логического следования, в которой материальная импликация замещалась другой условной связью – строгой импликацией. Это было большим шагом вперед, хотя и оказалось, что строгая импликация тоже не лишена собственных парадоксов.
Более совершенное описание условной связи и логического следования было дано в 50-е гг. немецким логиком В.Аккерманом и американскими логиками А.Андерсеном и Н.Белнапом. Им удалось исключить не только парадоксы материальной импликации, но и парадоксы строгой импликации. Введенная ими импликация получила название релевантной (т.е. уместной), поскольку ею можно связывать только утверждения, имеющие какое-то общее содержание.
В настоящее время теория логического следования является одним из наиболее интенсивно развивающихся разделов неклассической логики. Интересный новый подход недавно намечен немецким логиком Х.Весселем. Он предложил разделить две задачи, ранее решавшиеся одновременно: сначала описать основные правила логического следования, а уже затем вводить разные типы условных связей, или импликаций. Оценка этого подхода – дело будущего.
Возникновение квантовой механики, пришедшей на смену классической механике Ньютона, произвело подлинный переворот в физическом мышлении.
Пересмотр традиционных представлений привел к возникновению идеи особой логики квантовой механики.
Предполагалось, что теории классической физики, описывающие факты, опираются на законы обычной логики – логики макромира; квантовая же физика имеет дело не просто с фактами, а с их вероятностными связями, и в ней рассуждают, опираясь на совершенно иные схемы мышления. Выявление и систематическое описание последних –
Эту идею впервые высказал американский математик Д. фон Нейман. В середине 30-х гг. им вместе с другим американским математиком Д. Биркгофом была построена особая квантовая логика, положившая начало еще одному направлению неклассической логики. Позднее немецкий философ Г. Рейхенбах построил еще одну логику с целью устранения «причинных аномалий», возникающих при попытках применить классическое причинное объяснение к квантовым явлениям. К настоящему времени предложены десятки разных логических систем, стремящихся выявить своеобразие рассуждений о квантовых объектах.
Эти «квантовые логики» серьезно различаются как множествами принимаемых в них законов, так и способами своего обоснования. Чаще всего в них отказываются от классических законов ассоциативности и дистрибутивности, касающихся сложных утверждений, построенных с помощью союзов «и» и «или». Иногда отбрасывается даже закон исключенного третьего.
В начальный период своего развития квантовая логика встретила как критику (физики Н. Бор, В. Паули), так и одобрение (физики К.Вайцзеккер, В. Гейзенберг, М. Борн). Длительная полемика не внесла, однако, ясности в вопрос: действительно ли квантовая механика руководствуется особой логикой? Если даже это так, нужно признать, что исследования в данном направлении не оказали сколько-нибудь заметного воздействия на развитие самой механики. Постепенно квантовая логика стала даже отходить от нее и искать приложения в других областях. Одно из таких наметившихся приложений – диалог двух исследователей, придерживающихся по обсуждаемому вопросу противоположных точек зрения, но пользующихся общим языком диалога.
Наука непримирима к противоречиям и успешно борется с ними. Но в жизни многих научных теорий, особенно в начале их развития, имеются периоды, когда они не свободны от внутренних противоречий.
Логика, требующая исключения противоречий, должна считаться с этим обстоятельством. К тому же ей самой присущи внутренние противоречия (логические парадоксы), периодически доставляющие немало беспокойства.
Классическая логика подходит к противоречиям несколько прямолинейно. Согласно одному из ее законов, из противоречия следует все, что угодно. Это означает, что противоречие запрещается, притом запрещается под угрозой, что в случае его появления в теории окажется доказуемым любое утверждение. Очевидно, что тем самым теория будет разрушена.
Однако реально никто не пользуется этим разрешением выводить из противоречий все, что попало. Практика научных рассуждений резко расходится в данном пункте с логической теорией.
В качестве реакции на это рассогласование в последние десятилетия начали разрабатываться различные варианты паранепротиворечивой логики. Несколько необычное ее название призвано подчеркнуть, что она иначе трактует противоречие, чем классическая логика.
Исключается, в частности, возможность выводить из противоречий любые утверждения. Доказуемость в теории противоречия перестает быть смертельно опасной угрозой, нависшей над ней. Этим не устраняется, конечно, принципиальная необходимость избавляться от противоречий в процессе дальнейшего развития теории. Интересно отметить, что одним из первых (еще в 1910 г.) сомнения в неограниченной приложимости закона непротиворечия высказал русский логик Н.А.Васильев. «Предположите, – говорил он, – мир осуществленного противоречия, где противоречия выводились бы, разве такое познание не было бы логическим?» Васильев писал не только научные статьи, но и стихи. В них иногда своеобразно преломлялись его логические идеи, в частности идея воображаемых (возможных) миров:
Эволюционер из трущоб
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
рейтинг книги
Сердце Дракона. Том 20. Часть 1
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
рейтинг книги
Как я строил магическую империю 6
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
рейтинг книги
Звездная Кровь. Изгой
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
рейтинг книги
Измена. Тайный наследник. Том 2
2. Тайный наследник
Фантастика:
фэнтези
рейтинг книги
Отражение первое: Андерсы? Эвансы? Поттеры?
Фантастика:
фэнтези
рейтинг книги
