Любительская астрономия: люди открывшее небо
Шрифт:
Древнейшие цивилизации Египта и Междуречья уже вели лунный календарь, им были знакомы такие явления, как летнее и зимнее солнцестояния, весеннее и осеннее равноденствия.
Вавилонские жрецы составили множество астрономических таблиц. Они ввели разделение полного угла на 360 градусов, заложили основы для развития тригонометрии, создали лунный календарь. Они впервые ввели разделение года на месяцы и недели.
Активно проводились астрономические наблюдения в Древнем Китае. Китайские астрономы оставили больше всего в истории Древнего мира сообщений о необычных явлениях на небе: затмениях, кометах, метеорных дождях, новых звездах. Первая запись о появлении кометы в китайских хрониках относится к 631 г. до н. э., о лунном затмении – к 1137 г. до н. э., о солнечном – к 1328 г. до н. э., первый метеорный поток описан в 687 г. до н. э… Благодаря китайским астрономам мы можем проследить историю возвращений к Солнцу кометы Галлея более чем
2. В Древней Элладе
Астрономия Древней Греции создала наиболее совершенную научную (вернее философскую) картину мира в тот период. Ученые Эллады старались понять общее устройство Вселенной, одновременно совершенствуя методы наблюдений и вычислений.
До появления телескопа основным инструментом астронома были его собственные глаза, которым помогали угломерные инструменты, позволяющие измерить высоту светил над горизонтом, угловое расстояние между ними. Простейший из таких инструментов – гномон – представлял собой всего лишь вертикальный шест, воткнутый в землю. Однако, по длине отбрасываемой им тени можно вычислить высоту Солнца над горизонтом, определить, когда наступает полдень, а производя наблюдения изо дня в день – определить день солнцестояния. В Древней Греции была изобретена астролябия – один из основных угломерных инструментов древности, позволяющий не только измерить высоту светила в градусах, но и определить широту места наблюдения.
Как же представляли себе древние ученые устройство Вселенной?
Почти везде картина мира была основана на видимых кажущихся явлениях, происходящих на небе. Вначале Земля представлялась огромным плоским диском, лежащим в центре Вселенной, и покрытым куполом неба. Однако позже появилась идея (одним из первых ее высказал Пифагор), что Земля – вовсе не диск, а шар. Впоследствии этому нашлось много подтверждений: например, то, что из-за горизонта первыми показываются мачты корабля, верхушки деревьев и гор (по мере приближения). Доказательством шарообразности Земли служит и ее тень на лунном диске во время лунных затмений. Края тени всегда имеют округлую форму.
Древнегреческие ученые смогли многое узнать и понять. Например, Эратосфен в 240 г. до н. э. довольно точно определил длину земной окружности и наклон земной оси. Величайший астроном древности Гиппарх (ок. 190 до н. э. – ок. 120 до н. э.) уточнил длину года, длительность синодического и сидерического лунных месяцев [1] (с точностью до секунды), измерил средние периоды обращения планет. По таблицам Гиппарха можно было предсказывать солнечные и лунные затмения с неслыханной для того времени точностью – до 1–2 часов. Именно он ввёл географические координаты – широту и долготу. Но главным достижением Гиппарха стало открытие смещения небесных координат – «предварения равноденствий». Изучив данные наблюдений за 169 лет, он нашёл, что положение Солнца в момент равноденствия сместилось на 2°, или на 47” в год (на самом деле – на 50,3”). Другими словами, каждый год равноденствие наступает немного раньше, чем в предыдущем году – примерно на 20 минут 24 секунды. Основная причина предварения равноденствий – прецессия, периодическое изменение направления земной оси под влиянием притяжения Луны, а также (в меньшей степени) Солнца. Изменения направления земной оси приводит к изменению положения на небосводе точек небесных полюсов: так, Полярная звезда раньше находилась дальше от полюса, чем сейчас, а в будущем снова удалится от него. Это смещение является периодическим, и примерно каждые 26 000 лет точки равноденствия возвращаются на прежние места, а небесные полюсы, описав на фоне звезд окружность, тоже занимают прежнее положение.
1
См. главу «Луна и ее наблюдения».
В 134
Итог всему развитию античной астрономии подвел великий александрийский астроном, математик, оптик и географ Клавдий Птолемей. Он значительно усовершенствовал сферическую тригонометрию, составил таблицу синусов. Но главное его достижение – трактат «Мегале синтаксис» («Большое построение»); арабы превратили это название в «Аль Маджисти» (отсюда позднейшее искаженное «Альмагест»). Этот труд содержит фундаментальное изложение геоцентрической системы мира. Она не была придумана Птолемеем, но он описал ее с максимальной точностью.
Всякую теорию необходимо согласовывать с наблюдениями. Астрономам древности требовалось объяснить неравномерность движения планет, в частности, попятное движение, когда планета движется назад, описывая «петлю» (в действительности, в это время Земля «обгоняет» ее, двигаясь по своей орбите), а также объяснить изменение их видимой яркости, связанное с изменением расстояния от Земли.
В рамках геоцентрической системы невозможно было правильно объяснить эти явления. Была придумана искусственная модель, согласно которой, всякая планета равномерно движется по кругу (эпициклу), центр которого, в свою очередь, движется по другому кругу, который называется деферентом. Как ни странно, для этой, не имеющей ничего общего с действительностью схемы удавалось подобрать такие значения, которые вполне совпадали с наблюдаемыми явлениями и позволяли предсказывать их в будущем (в пределах, которые можно было измерить без оптических приборов).
Будучи принципиально неверной, система Птолемея, тем не менее, позволяла с достаточной для того времени точностью предвычислять положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение многих веков.
3. Средние века
Средневековье – это время упадка европейской науки. В VII–XIV веках центром научного мира становятся города Арабского Востока. В 20-е годы IX века в Багдаде был основан «Дом Мудрости», по сути, академия наук. При нем была богатая библиотека старинных рукописей и астрономическая обсерватория. Арабские ученые перевели «Альмагест» Птолемея, труды Аристотеля и других древнегреческих ученых и индийские астрономические сочинения.
Многие ученые арабского средневековья оставили заметный след в истории астрономии.
Мухаммед Аль-Хорезми (783–850 гг.) составил астрономические и тригонометрические таблицы для нужд теоретической и практической астрономии, описал разные календарные системы, устройство и применение основных астрономических инструментов.
Аль-Баттани (858–929 гг.) проверил таблицы Птолемея, уточнил величину прецессии и угла между эклиптикой [2] и небесным экватором [3] .
2
Эклиптика – воображаемая линия, по которой проходит видимый годичный путь Солнца по небесной сфере (см. главу «Общие рекомендации начинающему наблюдателю).
3
См. главу «Общие рекомендации начинающему наблюдателю.
Абу Райхан аль-Бируни (973–1048 гг.) вел многолетние наблюдения небесных объектов, самостоятельно, по оригинальной методике, определил размеры Земли и уже тогда догадывался о её вращении вокруг Солнца.
Омар Хайям занимался созданием астрономических таблиц, разработкой математического обеспечения практической астрономии и составлением календарей. Созданный им в 1079 г. персидский солнечный календарь был значительно точнее григорианского и применялся в Иране и ряде других государств до середины XIX века.