Чтение онлайн

на главную - закладки

Жанры

Машины создания
Шрифт:

Эти революции принесут опасности и возможности, слишком обширные, чтобы их могло вместить человеческое воображение. Все же принципы изменения, которые выполнялись для молекул, клеток, животных, разума, и машинам, должны продолжать деятельность даже в век биотехнологии, наномашин и искусственного разума. Те же самые принципы, которые приложимы в море, на земле и в воздухе, должны сохраняться, когда мы будем распространять жизнь Земли к звездам. Понимание сохраняющихся принципов изменения поможет нам понять потенциал для хорошего и плохого в новых технологиях.

Порядок из хаоса

Порядок может появляться из хаоса без чьих-либо распоряжений: хорошо организованные кристаллы конденсировались из бесформенного межзвездного

газа намного раньше Солнца, Земли, или появления жизни. Из хаоса также появляется кристаллический порядок и при более знакомых обстоятельствах. Вообразите молекулу, возможно правильную по форме, а, возможно, неравномерную и узловатую как корень имбири. Теперь вообразите большое число таких молекул, перемещающихся беспорядочно в жидкости, переворачиваясь и толкаясь как алкоголики в невесомости и темноте. Вообразите испаряющуюся и охлаждающуюся жидкость, что заставляет молекулы быть ближе друг к другу и замеляя их движения. Будут ли эти беспорядочно перемещающиеся, молекулы странной формы просто собираться в беспорядочных «кучах»? В общем случае – нет. Обычно они будут устанавливаться в кристаллическую структуру, каждый аккуратно устраиваясь напротив своих соседей, формируя строки и столбцы, такие же совершенные, как шахматная доска, хотя часто более сложные.

Этот процесс не включает ни волшебство, ни какие-то специальные свойства молекул и квантово-механических сил. Это даже не требует специальных соответствующих друг другу форм, которые позволяют молекулам белка самостоятельно собираться в машины. Если положить мраморные шарики одинакового размера на поднос и встряхнуть, также выпадают в правильные рисунки.

Кристаллы растут путём проб и удалением ошибок, путём варьирования и селекции. Никакие крошечные руки их не собирают. Кристалл может начинаться со случая молекул, собирающихся в группу: молекулы блуждают, сталкиваются, и собираются в группы случайным образом, но группа держится вместе лучше всего когда она упакована в правильную кристаллическую структуру. Далее в первоначальный маленький кристалл ударяются другие молекулы. Некоторые тыкаются в неправильные места или с неправильной ориентацией; они плохо прилипают и от колебаний вновь отваливаются. Другие по случаю попадают нужным образом; они лучше прилипают и часто остаются. Слой строится на слое, расширяя кристаллическую структуру. Хотя молекулы сталкиваются случайным образом, они не прилипают случайно. Порядок растёт из хаоса путём варьирования и селекции.

Эволюционирующие молекулы

В росте кристаллов, каждый слой образует шаблон для следующего. Однородные слои накапливаются и формируют твердый блок.

В клетках нити ДНК или РНК также могут служить в качестве шаблонов при помощи ферментов, которые действуют как молекулярные копировальные машины. Но элементы, из которых строятся нити нуклеиновых кислот, могут быть устроены во многих различных последовательностях, и нить шаблона может отделиться от копии. И нить, и её копия могут далее снова быть скопированы. Биохимик Сол Спиджельман использовал копировальные машины (белки из вируса) для экспериментов в испытательной пробирке. Говоря просто, безжизненная среда дуплицирует молекулы РНК.

Представьте себе нить РНК, плавающую в испытательной пробирке вместе с копировальными машинами и элементами РНК. Нить кувыркается и изгибается, пока она не наталкивается на копировальную машину в правильном положении, чтобы слипнуться. Элементы толкутся вокруг, пока один нужного вида не встретит копировальную машину в правильном положении, которая соответствует нити шаблона. Как только соответствующие элементы ухитряются попасть в нужное положение, машина захватывает их и привязывает их к растущей копии; хотя элементы сталкиваются случайным образом, машина связывает выборочно. В конце концов машина, шаблон и копия разъединяются.

В терминологии зоолога Ричарда Давкинса из Оксфорда, объекты, которые делают копии себя, называются репликаторами. В этой

окружающей среде молекулы РНК подходят под определение: единственная молекула скоро превращается в две, потом четыре, восемь, шестнадцать, тридцать две, и так далее, умножаясь экспоненциально. Далее скорость репликации снижается: постоянный запас белковых машин может производить копии только с какой-то скоростьюРНК, независимо от того, сколько молекул шаблона соперничают друг с другом для их услуг. Ещё позже сырья для созданияРНК молекулы становится недостаточно, и репликация задерживается вплоть до остановки. Быстро растущее число молекул достигает предела росту и останавливает репродуцирование.

Копировальные машины, однако, часто копируют неправильно нить РНК, вставляя, удаляя, или неправильно сопоставив элемент нити. Получающаяся в результате нить с мутациями тогда отличается по последовательности элементов или длине. Такие изменения довольно случайны, и изменения накапливаются по мере того как скопированные с ошибкой молекулы снова копируются с ошибкой. По мере того как молекулы размножаются, они начинают отличаться от своих предшественников и друг от друга. Это может выглядеть как рецепт, приводящий к хаосу.

Биохимики нашли, что различающиеся молекулы РНК копируются с разными скоростями, в зависимости от их длин и структуры элементов. Потомки более быстрых репликаторов естественно становятся более распространёнными. Действительно, если один вид копируется только на 10 процентов быстрее чем его собратья, то после одной сотни поколений, каждый из более быстрого вида даст в 1000 раз большее число потомков. Малые различия в экспоненциальном росте накапливаются экспоненциально.

Когда в испытательной пробирке заканчиваются элементы, экспериментатор может взять пробу его РНК и «заразить» новую пробирку. Процесс начинается снова и молекулы, которые доминировали в первом раунде соревнования начинаются с некоторой форой. Появляются маленькие изменения, по прошествии времени вырастая в большие. Некоторые молекулы размножаются быстрее, и их вид доминирует в смеси. Когда ресурсы исчерпываются, экспериментатор может взять пробу РНК и начать снова (и снова, и снова), сохраняя условия стабильными.

Этот эксперимент показывает естественный процесс: независимо от того, с какой последовательности РНК начинает экспериментатор, кажущийся хаос случайных ошибок и копирование с систематическими ошибками выдвигает вперёд один вид молекул РНК (плюс-минус некоторые ошибки копирования). Его типичная версия имеет известную, четкую последовательность 220 элементов. Это – лучший РНК репликатор в этой среде, так что он перенаселяет другие и остаётся.

Копирование, растянутое во времени, копирование с ошибками и конкуренция всегда дают те же самые результат, независимо от длины или структуры молекулы РНК, с которой начинается процесс. Хотя никто не мог бы предсказать, какая структура выиграет, каждый может видеть, что изменение и конкуренция будут иметь тенденцию выдвигать единственного победителя. В такой простой системе могло бы произойти кое-что ещё. Если эти репликаторы сильно воздействуют друг на друга (возможно, путём выборочных атак или помощи друг другу), то результаты могли бы напоминать более сложную экологию. Но как есть, они просто конкурируют за ресурсы.

Варьирование деталей в этом примере показывает нам кое-что еще: молекулы РНК приспосабливаются по-разному к различным окружающим средам. Молекулярная машина, называемая рибонуклеазой захватывает молекулы РНК, имеющие определённые последовательности элементов, находящихся на поверхности, и режет их пополам. Но молекулы РНК, подобно белкам, сворачиваются в структуры в зависимости от их последовательности, и путём сворачивания нужным образом они могут защищать свои уязвимые места. Экспериментаторы находят, что молекулы РНК развивают в процессе эволюции способность жертвовать быстрым размножением в пользу лучшей защиты, когда вокруг находится рибонуклеаза. Опять же, конкуренция способствует возникновению лучшего.

Поделиться:
Популярные книги

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Хозяин Теней

Петров Максим Николаевич
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней

Попаданка. Финал

Ахминеева Нина
4. Двойная звезда
Фантастика:
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Попаданка. Финал

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

Имперский Курьер. Том 3

Бо Вова
3. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 3

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал

Избранное. Компиляция. Книги 1-11

Пулман Филип
Фантастика:
фэнтези
героическая фантастика
5.00
рейтинг книги
Избранное. Компиляция. Книги 1-11

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника