Математические головоломки и развлечения
Шрифт:
Можете ли вы, пользуясь лишь теми данными, которые приведены на чертеже, вычислить длину гипотенузы АС?
На размышление дается одна минута!
4. Хитрый электрик. Однажды электрику пришлось столкнуться с довольно неприятной задачей.
В трехэтажном доме проведена скрытая проводка. Наружу провода выходят только в двух местах: на третьем этаже и в подвале.
В том и другом случаях вывод представляет собой пучок из 11 абсолютно одинаковых проводов. Какой конец провода в верхнем выводе соответствует тому или иному концу провода в нижнем выводе, неизвестно. Именно это и
Чтобы выполнить свою задачу, он может сделать две вещи:
1) закоротить любые провода вверху или внизу, скрутив их концы;
2) отыскать замкнутый контур с помощью специального тестера, состоящего из батарейки и звонка. Если такой прибор присоединить к концам неповрежденного провода, раздастся звонок.
Не желая понапрасну бегать вверх и вниз по лестнице, электрик, увлекавшийся к тому же исследованием операций, уселся на ступеньке с карандашом и бумагой и вскоре придумал наиболее эффективный способ решения задачи.
В чем состоял его метод?
5. Как пересечь сеть прямых? Одна из самых старых топологических головоломок, известных любому школьнику, состоит в вычерчивании непрерывной линии, пересекающей по одному разу все 16 звеньев замкнутой сети прямолинейных отрезков, изображенных на рис. 49.
Рис. 49
Кривая, проведенная на этом рисунке, не может служить решением головоломки, потому что не пересекает одного звена сети. При построении решения использовать какие-нибудь трюки — проводить кривую через вершины сети, вдоль ее звеньев, складывать лист бумаги и т. д. — нельзя.
Нетрудно доказать, что на плоскости эта головоломка решения не имеет. Возникают два вопроса: можно ли решить ее на сфере?
Существует ли решение на поверхности тора (бублика)?
6. Двенадцать спичек. Если считать, что спичка служит эталоном длины (ее длина принята за единицу длины), то 12 спичек можно различными способами расположить на плоскости так, чтобы получились многоугольники с целочисленной площадью. Два таких многоугольника изображены на рис. 50: площадь квадрата равна 9, площадь креста —5.
Рис. 50
Задача. Пользуясь всеми 12 спичками (длина каждой спички должна быть использована полностью), выложите периметр многоугольника, площадь которого равна 4.
7. Отверстие в шаре. На первый взгляд это совершенно невероятная задача (невероятная потому, что кажется, будто данных для решения недостаточно).
Через центр шара просверлено цилиндрическое отверстие длиной 6 см. Каков объем оставшейся части шара?
8. Влюбленные жуки. Четыре жука — Л, В, С, D — сидят по углам квадрата со стороной 10 см (рис. 51).
Рис. 51
Жуки
9. Сколько детей?
— Я слышу, в саду играют дети, — сказал Джон. — Неужели все они ваши?
— Боже упаси, конечно, нет, — воскликнул профессор Смит, известный специалист по теории чисел. — Там, кроме моих детей, играют еще и дети троих соседей, но наша семья самая большая.
У Браунов детей меньше, чем у меня, у Гринов — еще меньше, а меньше всего детей у Блэков.
— А сколько всего детей? — спросил Джон.
— На этот вопрос я отвечу так, — сказал Смит. — Детей меньше восемнадцати, а если перемножить между собой число детей в семьях, то получится номер моего дома, который вы видели, когда пришли.
Джон достал из кармана блокнот и карандаш и принялся за вычисления. Через некоторое время он поднял голову и сказал:
— Нужна еще кое-какая информация. У Блэков больше одного ребенка?
Как только Смит ответил, Джон улыбнулся и правильно назвал число детей в каждой семье.
Джону задача показалась тривиальной, поскольку он знал номер дома, а профессор сообщил ему, сколько детей у Блэков — один или больше. Но оказывается, что число детей в каждой семье можно определить и без этой дополнительной информации!
Ответы
1. Существует несколько различных способов размещения сигарет.
На рис. 52 показано традиционное решение, которое обычно приводится в старых сборниках головоломок.
Рис. 52
К моему удивлению, около пятнадцати читателей обнаружили, что семь сигарет тоже можно разложить так, чтобы каждая касалась всех остальных! Из-за этого первую задачу следует считать устаревшей. На рис. 53, который прислали Дж. Рибики и Дж. нолдс, показано, как это делается.
Рис. 53
Схема нарисована для критического случая, когда отношение длины сигареты к ее диаметру равно
Тогда точки касания расположены точно на концах сигарет. Это решение годится также для любого отношения длины к диаметру, большего чем
Если изучить размеры существующих сигарет, то получится отношение около 8 к 1, то есть число, большее чем