Математические головоломки и развлечения
Шрифт:
Все эти устройства, безусловно, лишь первые шаги новой отрасли техники. Весьма вероятно, что будущие обучающиеся машины, обретя огромную мощь, станут выполнять самые неожиданные функции среди автоматов космического века. Лабиринты и космический век — эта комбинация снова возвращает нас к греческому мифу, уже упоминавшемуся в начале этой главы. Лабиринт Минотавра был построен для царя Миноса никем иным, как Дедалом, тем самым Дедалом, который изобрел крылья и чей сын Икар погиб, поднявшись слишком высоко в небо. «Столь хитро придуманного лабиринта еще не видели на свете ни до, ни после, — пишет Н. Хоуторн, пересказывая миф о Дедале. — Ничто
Глава 26. ЗАНИМАТЕЛЬНАЯ ЛОГИКА
Слова Шерлока Холмса: «Сколько раз я говорил вам, отбросьте все невозможное, тогда то, что останется, и будет ответом, каким бы невероятным он ни казался», — могли бы послужить эпиграфом к этой главе.
Если для решения головоломки требуется лишь умение логически мыслить и совсем не нужно производить арифметические выкладки, то такую головоломку обычно называют логической задачей. Логические задачи, разумеется, относятся к числу математических, поскольку логику можно рассматривать как очень общую, фундаментальную математику. Все же логические головоломки удобно выделить и изучать отдельно от их более многочисленных арифметических сестер. В этой главе мы рассмотрим в общих чертах три широко распространенных типа логических задач и постараемся выяснить, как следует подходить к их решению.
Чаще всего встречается тип задачи, который любители головоломок иногда называют «задачей о Смите — Джонсе — Робинсоне» (по аналогии со старой головоломкой, придуманной Г. Дьюдени).
Она состоит из серии посылок, обычно сообщающих те или иные сведения о действующих лицах; на основании этих посылок требуется сделать определенные выводы. Вот, например, как выглядит последняя американская версия задачи Дьюдени:
1. Смит, Джонс и Робинсон работают в одной поездной бригаде машинистом, кондуктором и кочегаром. Профессии их названы не обязательно в том же порядке, что и фамилии. В поезде, который обслуживает бригада, едут трое пассажиров с теми же фамилиями.
В дальнейшем каждого пассажира мы будем почтительно называть «мистер» (м-р).
2. М-р Робинсон живет в Лос-Анджелесе.
3. Кондуктор живет в Омахе.
4. М-р Джонс давно позабыл всю алгебру, которой его учили в колледже.
5. Пассажир — однофамилец кондуктора живет в Чикаго.
6. Кондуктор и один из пассажиров, известный специалист по математической физике, ходят в одну церковь.
7. Смит всегда выигрывает у кочегара, когда им случается встречаться за партией в бильярд.
Как фамилия машиниста?
Данные задачи можно было бы перевести на язык математической логики, воспользовавшись ее стандартными обозначениями, и искать решение с помощью соответствующих методов, однако такой подход был бы слишком громоздким. С другой стороны, без сокращенных обозначений того или иного рода трудно понять логическую структуру задачи. Удобнее всего воспользоваться таблицей, в пустые клетки которой мы будем вписывать всевозможные комбинации элементов рассматриваемых множеств. В нашем случае таких множеств два, поэтому нам понадобятся две таблицы (рис. 139).
Рис. 139 Две
В каждую клетку впишем 1, если соответствующая комбинация допустима, или 0, если комбинация противоречит условиям задачи. Посмотрим, как это делается. Условие 7, очевидно, исключает возможность того, что Смит кочегар, поэтому в клетку, стоящую в правом верхнем углу левой таблицы, мы вписываем 0. Условие 2 сообщает нам, что Робинсон живет в Лос-Анджелесе, поэтому в левый нижний угол таблицы мы вписываем 1, а во все остальные клетки нижней строки и левого столбца — 0, чтобы показать, что м-р Робинсон не живет в Омахе или в Чикаго, а м-р Смит и м-р Джонс не живут в Лос-Анджелесе.
Теперь нам придется немного подумать. Из условий 3 и 6 известно, что специалист по математической физике живет в Омахе, но мы не знаем его фамилии. Он не может быть ни м-ром Робинсоном, ни м-ром Джонсом (ведь тот забыл даже элементарную алгебру).
Следовательно, им должен быть м-р Смит. Это обстоятельство мы отметим, поставив 1 в среднюю клетку верхней строки правой таблицы и 0 — в остальные клетки той же строки и пустые клетки среднего столбца. Третью единицу можно вписать теперь только в одну клетку: это доказывает, что м-р Джонс живет в Чикаго. Из условия 5 мы узнаем, что кондуктор тоже носит фамилию Джонс, и вписываем 1 в центральную клетку левой таблицы и 0 —во все остальные клетки средней строки и среднего столбца. После этого наши таблицы приобретают вид, показанный на рис. 140.
Рис. 140 Таблицы, изображенные на рис. 139, после предварительного заполнения.
Теперь уже нетрудно продолжить рассуждения, приводящие к окончательному ответу. В столбце с надписью «Кочегар» единицу можно поставить только в нижней клетке. Отсюда сразу следует, что в левом нижнем углу должен стоять 0. Пустой остается лишь клетка в левом верхнем углу таблицы, куда можно поставить только 1. Итак, фамилия машиниста Смит.
Чрезвычайно сложные и хитроумные задачи такого рода любил изобретать Льюис Кэрролл. Декан математического факультета Дортмутского колледжа Джон Дж. Кемени запрограммировал одну из чудовищных (с 13 переменными и 12 условиями, из которых следует, что «ни один судья не нюхает табак») кэрролловских задач для компьютера IBM-704. Машина справилась с решением примерно за 4 минуты, хотя распечатка полной «таблицы истинности» задачи (таблицы, показывающей, истинны или ложны возможные комбинации значений истинности переменных задачи) заняла бы 13 часов!
Читателям, которые хотят попытать счастья в решении более сложной задачи, чем задача о Смите—Джонсе — Робинсоне, предлагаем новую головоломку. Ее автор Р. Смаллиан из Принстонского университета.
1. В 1918 году закончилась первая мировая война. В день подписания мирного договора три супружеские пары собрались, чтобы отпраздновать это событие за праздничным столом.
2. Каждый муж доводился братом одной из жен, а каждая жена была сестрой одного из мужей, то есть среди присутствующих можно было указать три родственные пары «брат с сестрой».