Чтение онлайн

на главную - закладки

Жанры

Материаловедение: конспект лекций

Алексеев Виктор Константинович

Шрифт:

В легированных сталях выделяются две группы карбидов: группа I – M 3 C, M 23 C 6, M 7 C 3 и M 6 C и группа II – MC, M 2 C (M – легирующий компонент – элемент). Карбиды I группы имеют сложную кристаллическую решетку и при соответствующем нагреве достаточно хорошо растворимы в аустени—те. Карбиды II группы имеют простую кристаллическую решетку, но растворяются в аустените лишь частично и при очень высокой температуре.

Некарбидообразующие элементы (легированные)

содержатся в легированных сталях в виде твердого раствора в феррите. Карбидообразующие легированные элементы могут находиться в различных структурных состояниях: они могут быть растворены в феррите или цементите (FeCr) 3 C или существовать в виде самостоятельных структурных составляющих – специальных карбидов: WC, MoC и др. Местоположение карбидообразующих элементов в структуре стали зависит от количества введенных легирующих элементов и содержания углерода. Легирующие элементы, растворенные в феррите, искажают его кристаллическую решетку; уменьшают теплопроводность и электропроводность стали. Карбиды легирующих элементов отличаются весьма высокой твердостью (70–75 HRC) и износостойкостью, но обладают значительной хрупкостью. Они играют очень важную роль в производстве инструментальных сталей.

Как показали исследования, конкретному сечению стали должно соответствовать определенное количество легирующих элементов, иначе ухудшаются такие ее технологические свойства, как обработка резанием, свариваемость и др. Например, если содержание хрома или марганца превышает 1 %, увеличивается порог хладноломкости стали (порог хладноломкости, или критическая температура хрупкости, – это температура перехода металла от вязкого разрушения к хрупкому, и наоборот).

2. Теория термической обработки

Задача термической обработки – путем нагрева и охлаждения вызвать необратимое изменение свойств вследствие необратимого изменения структуры. Любой вид термической обработки обычно изображается в координатах температура – время.

Собственно термическая обработка не предусматривает какого—либо иного воздействия, кроме температурного.

При термической обработке стали происходят следующие основные превращения:

1) превращение перлита в аустенит, происходящее при нагреве выше точки Ас1 :

Fea + Fe3 C -> Fev (C) или П – А;

Рис. 8. График термической обработки: н – время нагрева, в – время выдержки, 0 – время охлаждения; t max – максимальная температура; tист – истинная скорость охлаждения при данной температуре, v = t max – средняя скорость охлаждения

2) превращение аустенита в перлит, происходящее при медленном охлаждении из? – области:

Fev (C) -> Fea (C) + Fe 3 C или А -> П;

3) превращение аустенита в мартенсит, происходящее

при быстром охлаждении из? – области:

Fev (C) -> Fea (C) или А -> М;

4) превращение мартенсита при нагреве (отпуске):

Fea (C) -> Fea + Fe3 C или М -> П.

Описание структурных превращений, происходящих в стали при термической обработке, является одновременно и теорией термической обработки.

Превращение перлита в аустенит – необходимый этап для многих видов термической обработки.

Рис. 9. Диаграмма изотермического превращения перлита (П) в аустенит

Сталь с содержанием (А) углерода 0,8 %. Превращение перлита в аустенит реализуется при нагреве выше значения Ас 1, причем с повышением температуры оно непрерывно ускоряется. При непрерывном нагреве с различной скоростью лучи v1 и v2 превращения начинаются в точке а' (а' ) и заканчиваются в точке b' (b' ), которая тем выше, чем больше скорость нагрева. В связи с этим чем быстрее нагрев, тем выше должна быть температура нагрева стали, для того чтобы вызвать полное превращение перлита в аустенит, включая полное растворение карбидов и гомогенизацию аус—тенита.

В интервале между точками а'Ь' (a» b») превращение идет с разной скоростью, но приблизительно в середине интервала превращение идет с сильным поглощением теплоты настолько бурно, что на кривой нагрева образуется площадка Это обычно и есть экспериментально определяемая температура превращения Ас1.

При исходной перлитной структуре образование аустени—та идет из многих центров, и тотчас после окончания превращения перлита в аустенит образуется мелкозернистый аус—тенит.

Дальнейший нагрев ведет к росту зерна аустенита, осуществляемого по одному из следующих механизмов: путем слияния мелких зерен в крупные, путем миграции границ зерен. Процесс слияния происходит при более низкой температуре (от +900 до +1000 °C), чем миграция (> +1100 °C), но приводит к образованию отдельных более крупных зерен, т. е к разнозернистости.

При термической обработке механические свойства стали могут изменяться в очень широких пределах. Так, например, твердость стали, содержащей 0,8 % углерода, после такой обработки возрастает до 160–600 МВ.

3. Диаграмма изотермического превращения аустенита

На рис. 10 представлена диаграмма изотермического превращения аустенита стали, содержащей 0,8 % углерода.

По оси ординат откладывается температура. По оси абсцисс – время.

Рис. 10. Диаграмма изотермического превращения аустенита стали, содержащей 0,8 % углерода

Для изучения изотермического превращения аустенита небольшие образцы стали нагревают до температур, соответствующих существованию стабильного аустенита, т. е. выше критической точки, а затем быстро охлаждают, например до +700, +600, +500, +400, +300 °C и т. д., и выдерживают при

Поделиться:
Популярные книги

Эволюционер из трущоб. Том 4

Панарин Антон
4. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 4

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Хозяйка усадьбы, или Графиня поневоле

Рамис Кира
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Хозяйка усадьбы, или Графиня поневоле

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

Муассанитовая вдова

Катрин Селина
Федерация Объединённых Миров
Фантастика:
космическая фантастика
7.50
рейтинг книги
Муассанитовая вдова

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет