Материаловедение. Шпаргалка
Шрифт:
Ковочные сплавы АК6 и АК8 (система Аl—М–Si—Cu) при горячей обработке давлением обладают высокой пластичностью. Они удовлетворительно свариваются, хорошо обрабатываются резанием, но под напряжением склонны к коррозии. Для обеспечения коррозионной стойкости детали из сплавов АК6 и АК8 анодируют или покрывают лакокрасочными материалами. Из ковочных сплавов изготавливают ковкой и штамповкой детали самолетов, работающие под нагрузкой. Эти сплавы способны работать при криогенных температурах.
Жаропрочные алюминиевые сплавы системы А1-Си-Мп (Д20, Д21) и Аl—Сu—Мg—Fе—Ni (АК4-1) применяют для изготовления
Литейные алюминиевые сплавы.
Основные требования к сплавам для фасонного литья – это сочетание хороших литейных свойств (высокой жидкотекучести, небольшой усадки, малой склонности к образованию горячих трещин и пористости) с оптимальными механическими и химическими (сопротивление коррозии) свойствами. Лучшими литейными свойствами обладают сплавы эвтектического состава.
45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы
Медь – это металл красного, в изломе розового цвета, имеет температуру плавления 1083о С. Кристаллическая решетка ГЦК с периодом а 0,31607 ям. Плотность меди 8,94 г/см3. Медь обладает высокими электропроводимостью и теплопроводностью. Удельное электрическое сопротивление меди 0,0175 мкОмм.
Марки меди: М00 (99,99 % Си), МО (99,97 % Си), М1 (99,9 % Си), М2 (99,7 % Си), М3 (99,50 % Си). Присутствующие в меди примеси оказывают большое влияние на ее свойства.
По характеру взаимодействия примесей с медью их можно разделять на три группы.
1. Примеси, образующие с медью твердые растворы: Ni, Zn, Sb, Fе. Р и др. Эти примеси (особенно Sb) резко снижают электропроводимость и теплопроводность меди, поэтому для проводников тока применяют медь М0 и М1. Сурьма затрудняет горячую обработку давлением.
2. Примеси Pb, Bi и другие, практически не растворимые в меди, образуют в ней легкоплавкие эвтектики, которые, выделяясь по границам зерен, затрудняют обработку давлением.
При содержании 0,005 % Вi медь разрушается при горячей обработке давлением, при более высоком содержании висмута медь становится хладноломкой; на электропроводимость эти примеси оказывают небольшое влияние.
3. Примеси кислорода и серы, образующие с медью хрупкие химические соединения Сu2О и Сu2S, входящие в состав эвтектики. Если кислород находится в растворе, то он уменьшает электропроводимость, а сера не влияет на нее. Сера улучшает обрабатываемость меди резанием, а кислород, если он присутствует в меди, образует закись меди и вызывает «водородную болезнь».
При нагреве меди в атмосфере, содержащей водород, происходит его диффузия в глубь меди. Если в меди присутствуют включения Си2О, то они реагируют с водородом,
Латуни – это многокомпонентные сплавы на основе меди, где основным компонентом является цинк. Технические латуни содержат до 40–45 % Zn. К однофазным б-латуням, которые легко деформируются в холодном и горячем состоянии, относятся Л96 (томпак), Л80 (полутомпак), Л68, обладающая наибольшей пластичностью. Двухфазные ( + ) – латуни, Л59 и Л60 менее пластичны в холодном состоянии и их подвергают горячей обработке давлением.
По технологическому признаку латуни подразделяют на две группы: деформированные и литейные. Литейные латуни мало склонны к ликвидации и обладают антифрикционными свойствами
Деформируемые латуни обладают высокими коррозийными свойствами в атмосферных условиях.
Латуни, предназначение которых для фасонного литья, содержат большое количество специальных присадок, улучшающих их литейные свойства.
Оловянные бронзы. Сплавы, богатые оловом, очень хрупки. Оловянные бронзы обычно легируют Zn, Ре, P, Pb, Ni и другими элементами. Цинк улучшает технологические свойства бронзы и удешевляет бронзу. Фосфор улучшает литейные свойства. Никель повышает механические свойства, коррозийную стойкость и плотность отливок и уменьшает ликвацию. Железо измельчает зерно, но ухудшает технологические свойства бронз и сопротивляемость коррозии.
Различают деформируемые и литейные оловянные бронзы, которые обладают хорошими литейными свойствами. Двухфазные бронзы обладают высокими антифрикционными свойствами. Их применяют для изготовления антифрикционных деталей.
Никелевые сплавы широко распространены в машиностроении. Никель сообщает меди повышенную стойкость против коррозии и улучшает ее механические и литейные свойства. Бронзы, которые содержат только никель, не применяются из-за высокой стоимости никеля. Никель вводится в сочетании с другими элементами.
В промышленности распространены никелевые сплавы, которые имеют названия: мельхиор (сплав меди с 18–20 % никеля) – применяется для гильз, имеет белый цвет и высокую коррозийную стойкость; константан – сплав меди с 39–41 % никеля. Константан имеет большое электрическое сопротивление и применяется в виде проволок и лент для реостатов, электроизмерительных приборов.
Медь и ее сплавы находят широкое применение в электротехнике, электронике, приборостроении, литейном производстве, двигателестроении. Так, 50 % полученной меди потребляется электротехнической и электронной отраслями промышленности. Она стоит на втором месте (вслед за алюминием) по объему производства среди цветных металлов.
Технические и технологические свойства меди: высокие электро– и теплопроводность, достаточная коррозионная стойкость, хорошая обрабатываемость давлением, свариваемость всеми видами сварки, хорошо поддается пайке, легко полируется. У чистой меди небольшая прочность и высокая пластичность. К недостаткам меди относятся:
– высокая стоимость;
– значительная плотность;
– большая усадка при литье;
– горячеломкость;
– сложность обработки резанием.