Чтение онлайн

на главную - закладки

Жанры

Мечта Эйнштейна. В поисках единой теории строения

Паркер Барри

Шрифт:

Температура в момент, о котором идёт речь, составляла примерно 1032 K – вполне достаточно для образования частиц. Частицы могут образовываться двумя способами. В первом случае при достаточно высокой энергии (или, что то же самое, при высокой температуре) рождаются электроны и их античастицы – это так называемое рождение пар. Например, при температуре 6 миллиардов градусов столкновение двух фотонов может дать пару электрон – позитрон. При ещё более высоких температурах могут рождаться пары протон – антипротон и так далее; в целом, чем тяжелее частица, тем бо?льшая энергия требуется для её рождения, т.е. тем выше должна быть температура.

Раньше мы видели, что есть и второй способ образования пар частиц – они могут появляться сразу же за горизонтом событий чёрных мини-дыр под действием приливных сил. Мы также говорили о том, что при испарении чёрных мини-дыр рождались ливни частиц, а поскольку вселенская чёрная дыра подобна мини-дыре, там происходило то же самое.

Итак,

есть два способа рождения частиц. Какой же из них следует считать более важным? По мнению астрономов, основная масса частиц образовалась за счёт наличия высоких энергий, так как только на самом раннем этапе приливные силы были настолько велики, чтобы приводить к рождению частиц в значительных количествах. Однако многое ещё здесь неясно, и впоследствии может оказаться, что второй метод также играет существенную роль.

Краткий период времени, следующий непосредственно за моментом 10– 43 с, обычно называют квантовой эпохой. В эту эпоху все четыре фундаментальных взаимодействия были объединены. Вскоре после момента 10– 43 с единое поле распалось, и от него отделилась первая из четырёх сил. Позднее по очереди отделились другие силы, которые изменялись по величине. В конце концов получились четыре знакомых нам взаимодействия.

Раздувание

Одна из трудностей, на которую наталкивается традиционная теория Большого взрыва, – необходимость объяснить, откуда берётся колоссальное количество энергии, требующееся для рождения частиц. Не так давно внимание учёных привлекла видоизменённая теория Большого взрыва, которая предлагает ответ на этот вопрос. Она носит название теории раздувания и была предложена в 1980 году сотрудником Массачусетского технологического института Аланом Гутом. Основное отличие теории раздувания от традиционной теории Большого взрыва заключается в описании периода с 10– 35 до 10– 32 с. По теории Гута примерно через 10– 35 с Вселенная переходит в состояние «псевдовакуума», при котором её энергия исключительно велика. Из-за этого происходит чрезвычайно быстрое расширение, гораздо более быстрое, чем по теории Большого взрыва (оно называется раздуванием). Через 10– 35 с после образования Вселенная не содержала ничего кроме чёрных мини-дыр и «обрывков» пространства, поэтому при резком раздувании образовалась не одна вселенная, а множество, причём некоторые, возможно, были вложены друг в друга. Каждый из участков пены превратился в отдельную вселенную, и мы живём в одной из них. Отсюда следует, что может существовать много других вселенных, недоступных для нашего наблюдения.

Хотя в этой теории удаётся обойти ряд трудностей традиционной теории Большого взрыва, она и сама не свободна от недостатков. Например, трудно объяснить, почему, начавшись, раздувание в конце концов прекращается. От этого недостатка удалось освободиться в новом варианте теории раздувания, появившемся в 1981 году, но в нём тоже есть свои трудности.

Эпоха адронов

Через 10– 23 с Вселенная вступила в эпоху адронов, или тяжёлых частиц. Поскольку адроны участвуют в сильных взаимодействиях, эту эпоху можно назвать эпохой сильных взаимодействий. Температура была достаточно высока для того, чтобы образовывались пары адронов: мезоны, протоны, нейтроны и т.п., а также их античастицы. Однако на заре этой эпохи температура была слишком высока, и тяжёлые частицы не могли существовать в обычном виде; они присутствовали в виде своих составляющих – кварков. На данном этапе Вселенная почти полностью состояла из кварков и антикварков. Сейчас свободные кварки не наблюдаются. Из современных теорий следует, что они попали в «мешки» и не могут их покинуть. Однако некоторые учёные считают, что где-то ещё должны остаться кварки, дошедшие до нас из тех далёких времён. Возможно, они столь же многочисленны, как атомы золота, но пока обнаружить их не удалось.

В соответствии с этой теорией, после того как температура достаточно упала (примерно через 10– 6 с), кварки быстро собрались в «мешки». Такой процесс носит название кварк-адронного перехода. В то время Вселенная состояла в основном из мезонов, нейтронов, протонов, их античастиц и фотонов; кроме того, могли присутствовать более тяжёлые частицы и немного чёрных дыр. При этом на каждую частицу приходилась античастица, они при соударении аннигилировали, превращаясь в один или несколько фотонов. Фотоны же, в свою очередь, могли образовывать пары частиц, в результате чего Вселенная, пока пары рождались и аннигилировали примерно с одинаковой скоростью, пребывала в равновесном состоянии. Однако по мере расширения температура падала и рождалось всё меньше и меньше пар тяжёлых частиц. Постепенно число аннигиляций превысило число рождений, и в результате почти все тяжёлые частицы исчезли. Если бы число частиц и античастиц было в точности одинаково, то они исчезли бы полностью. На самом деле это

не так, и свидетельство тому – наше существование.

Наконец температура упала настолько, что пары тяжёлых частиц уже не могли рождаться. Энергии хватало лишь для образования лёгких частиц (лептонов). Вселенная вступила в эпоху, когда в ней содержались в основном лептоны и их античастицы.

Эпоха лептонов

Примерно через сотую долю секунды после Большого взрыва, когда температура упала до 100 миллиардов градусов, Вселенная вступила в эпоху лептонов. Теперь она походила на густой суп из излучения (фотонов) и лептонов (в основном электронов, позитронов, нейтрино и антинейтрино). Тогда также наблюдалось тепловое равновесие, при котором электрон-позитронные пары рождались и аннигилировали примерно с одинаковой скоростью. Но кроме того, во Вселенной находились оставшиеся от эпохи адронов в небольших количествах протоны и нейтроны – примерно по одному на миллиард фотонов. Однако в свободном состоянии нейтроны через 13 минут распадаются на протоны и электроны, т.е. происходил ещё один важный процесс – распад нейтронов. Правда, температура в начале этой эпохи была ещё достаточно высока для рождения нейтронов при соударении электронов с протонами, поэтому равновесие сохранялось. А вот когда температура упала до 30 миллиардов градусов, электронам уже не хватало энергии для образования нейтронов, поэтому они распадались в больших количествах.

Ещё одно важное событие эпохи лептонов – разделение и освобождение нейтрино. Нейтрино и антинейтрино образуются в реакциях с участием протонов и нейтронов. Когда температура была достаточно высока, все эти частицы были связаны между собой, а при понижении температуры ниже определённого критического значения произошло их разделение, и все частицы свободно разлетелись в пространство. По мере расширения Вселенной их температура падала до тех пор, пока не достигла значения около 2 K. До настоящего времени обнаружить эти частицы не удалось.

Эпоха излучения

Через несколько секунд после Большого взрыва, когда температура составляла около 10 миллиардов градусов, Вселенная вступила в эпоху излучения. В начале этой эпохи было ещё довольно много лептонов, но при понижении температуры до 3 миллиардов градусов (порогового значения для рождения пар лептонов) они быстро исчезли, испустив множество фотонов. В то время Вселенная состояла почти полностью из фотонов.

В эпоху излучения произошло событие исключительной важности – в результате синтеза образовалось первое ядро. Это как раз то событие, которое пытался объяснить Гамов; о нём речь шла раньше. Примерно через три минуты после начала отсчёта времени, при температуре около миллиарда градусов, Вселенная уже достаточно остыла для того, чтобы столкнувшиеся протон и нейтрон соединились, образовав ядро дейтерия (более тяжёлой разновидности водорода). При соударении двух ядер дейтерия образовывались ядра гелия. Так за очень короткое время, примерно за 200 минут, около 25% вещества Вселенной превратилось в гелий. Помимо того, превращение водорода в гелий происходит в недрах звёзд, но там образуется лишь около 1% всей массы гелия. В эту эпоху возникли также другие элементы: немного трития и лития, но более тяжёлые ядра образоваться не могли. Поскольку всё, о чём здесь шла речь, естественно, относится к области теории, читатель вправе усомниться: а так ли это в действительности? Видимо, да, ведь теория прекрасно согласуется с наблюдениями, поэтому ей можно доверять. Например, согласно этой теории гелий должен составлять около 25% вещества во Вселенной, что подтверждается наблюдением.

Фоновое космическое излучение

Вселенная продолжала расширяться и охлаждаться в течение нескольких тысяч лет. Тогда она состояла в основном из излучения с примесью некоторых частиц (нейтронов, протонов, электронов, нейтрино и ядер простых атомов). Это была довольно тоскливая Вселенная, непрозрачная из-за густого светящегося тумана, и в ней почти ничего не происходило. Непрозрачность вызывалась равновесием между фотонами и веществом; при этом фотоны были как бы привязаны к веществу. Наконец, при температуре 3000 K в результате объединения электронов и протонов образовались атомы водорода, так что фотоны смогли оторваться от вещества. Как раньше нейтрино, так теперь фотоны отделились и унеслись в пространство.

Наверное, это напоминало чудо – густой туман внезапно рассеялся и Вселенная стала прозрачной, хотя и ярко красной, так как температура излучения была ещё довольно высока (чуть ниже 3000 K). Но постепенно она падала – сначала до 1000 K, затем до 100 K и наконец достигла нынешнего значения 3 K.

Существование такого фонового излучения предсказал в 1948 году Г. Гамов, но в своих рассуждениях он допустил массу ошибок, как численных, так и смысловых. Несколько лет спустя его студент исправил эти ошибки и рассчитал, что температура фонового излучения сейчас должна быть около 5 K. Считалось, однако, что это излучение обнаружить не удастся, в частности, из-за света звёзд. Вот почему прошло 17 лет, прежде чем фоновое излучение было зарегистрировано.

Поделиться:
Популярные книги

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Метатель. Книга 3

Тарасов Ник
3. Метатель
Фантастика:
попаданцы
альтернативная история
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 3

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Душелов. Том 4

Faded Emory
4. Внутренние демоны
Фантастика:
юмористическая фантастика
ранобэ
фэнтези
фантастика: прочее
хентай
эпическая фантастика
5.00
рейтинг книги
Душелов. Том 4

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Честное пионерское! Часть 4

Федин Андрей Анатольевич
4. Честное пионерское!
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Честное пионерское! Часть 4

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

"Сломанная подкова" Таверна у трёх дорог

Скор Элен
1. Попаданка в деле
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Сломанная подкова Таверна у трёх дорог

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9