Механика времени
Шрифт:
22. Гейзенберг построил такую формальную схему, в которой вместо координат и скоростей электрона фигурировали абстрактные алгебраические величины -- матрицы (матричная механика). После появления уравнения Шредингера была показана математическая эквивалентность волновой (основанной на уравнении Шредингера) и матричной механики. После этого осмысление в области оснований квантовой механики остановилось: в 1926 М. Борн дал вероятностную интерпретацию волн де Бройля, закрепляющую "бесконечный интеллектуальный тупик" как спекулятивную "форму истинности" квантовой механики. Входом в этот тупик послужило "осознание того факта, что движение электронов в атоме не описывается в понятиях классической механики, которое привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория,
23. Первым основным понятием Механики времени является состояние числа, "истинное квантовое состояние". Суждение Механики времени формируется риторическим принципом суперпозиции состояний числа, вытекающим из риторических свойств (значений, смысла) числа. Согласно этому принципу определяются все истинные состояния системы. Объекты, для которых определены операции с простыми числами, определены в своем истинном положении во времени, существуют как выделенные состояния системы, в которых эта система принимает вполне определенное (единственное) значение. По существу, это свойство простых чисел является определением измерения физической величины, а состояния, в которых физическая величина имеет определенное значение, связанное с данными свойствами, образуют полную историю собственных состояний этой величины.
24. Механика времени есть восстановление идеи полного детерминизма в классическом смысле через доказательство неполноты квантовомеханического описания. В механике времени доказывается гипотеза о наличии у квантовых объектов дополнительных степеней свободы -- "скрытых параметров", учет которых сделал бы поведение системы полностью детерминированным в смысле классической механики; неопределенность возникает только вследствие того, что эти "скрытые параметры" неизвестны и не учитываются. Для неполной логической структуры квантовой механики характерно присутствие двух совершенно разнородных по своей природе составляющих. Вектор состояния (волновая функция) однозначно определен в любой момент времени, если задан в начальный момент. В этой части теория вполне детерминистична. Но вектор состояния не есть наблюдаемая величина. О наблюдаемых на основе знания величинах можно сделать лишь статистические (вероятностные) предсказания. Идея физики числа выявляет целый мир этих "скрытых (ненаблюдаемых) параметров" - несокрытый мир множеств простых чисел, сквозной для формулы единицы как всеобщее пространство конкретных степеней свободы. Сегодня же результаты индивидуального измерения над квантовым объектом в общем случае, строго говоря, непредсказуемы. В этом смысле в механике времени отклоняется теорема Дж. Неймана о невозможности нестатистической интерпретации квантовой механики - вслед за отклонением основного положения квантовой механики о соответствии между наблюдаемыми (физическими величинами) и операторами в силу неполного их соответствия, недостаточного уровня формализации в современной квантово-механической интерпретации.
25. Формула единицы есть теория гравитации. Гравитация должна рассматривается в механике времени как фундаментальное свойство времени. Свойство времени образовывать пространство, отраженное в семи постулатах механики времени (п. 10). Тяготение есть физическая реальность измерения, гравитация же - физическая реальность всеобщего порядка - реальность исчисления. Именно в этом смысле свойства пространства-времени,
Дополнение
О семиотическом (риторическом) позитивизме
Математический формализм Д. Гильберта создает некоторые предпосылки для рефлексивной трактовки принципа формализации, однако, находится достаточно далеко от раскрытия смысла исчисления как истинного смысла физического процесса. Физическое существование числа, неполно формализованное математикой, отражается в неполноте математической формализации физики. Гильберт упускает проблему рефлексивного выявления оснований математики. Число раскрывает себя как физический факт существования бесконечности. Семиотический (риторический позитивизм) ставит вопрос о рефлексии физического опыта как опыта численности. Осмысление числа есть рефлексивное преодоление парадоксов теории множеств. Множество простых чисел есть содержательно истинное, "финитное" множество, мощность которого выражает степени бесконечности, степени свободы. Всеобщая теория числа есть полная непротиворечивая теория. Исчисление простых чисел - алгоритм божественного замысла. Теория множества простых чисел, теория априорных множеств ("множеств всех множеств") - венец развития теории множеств, основанной Г. Кантором, - вбирает точку зрения представителей математического интуиционизма, немало способствующую обнаружению физической реальности числа. Операции над множествами простых чисел, в которых посредством закона включенного третьего (горизонта интуиционистской логики) преодолеваются антиномии традиционной теории множеств, образуют аппарат механики времени. Множество простых чисел интерпретируется как "истинное множество", истинностно-бесконечное множество. Концепция математического интуитивизма о свободно становящейся последовательности и связанная с ней новая трактовка числового континуума как среды становления последовательности измельчающихся рациональных интервалов (в противовес традиционной точке зрения, конструирующей континуум из отдельных точек) - предшествует формированию всеобщей теории исчисления. В своей простейшей форме истинно-свободно становящаяся последовательность есть функция, перерабатывающая числа, числовые отношения в простые числа и конструирующая числа и числовые отношения из простых чисел, а также такая, что любое ее значение может быть эффективно вычислено. Исчисление простых чисел есть субъект-объектное исчисление - риторическое исчисление, основанное на риторической связке "есть", законе включенного третьего, на первичности семиотической дефиниции.