Шрифт:
Введение
Метод конечных элементов – один из т. н. сеточных методов. Такие методы предполагают рассмотрение цельной конструкции как совокупности отдельных конечных элементов, как показано на рисунке 1.
Рисунок 1. Разбиение конструкции на конечные элементы. а – нумерация конечных элементов; б – нумерация узлов.
В качестве конечных элементов выступают знакомые нам
M•d2u/dt2+C• du/dt+K•u = P
где M – матрица масс конструкции;
C – матрица демпфирования конструкции;
K – матрица жёсткости конструкции;
d2u/dt2 – вектор ускорений узлов конструкции;
du/dt – вектор скоростей узлов конструкции;
u – вектор перемещений узлов конструкции;
P – вектор узловых нагрузок.
Если вектор узловых сил P не меняется во времени, то задача сводится к статической, описываемой уравнением:
K•u = P
Так как многие задачи в машиностроении сводятся к статическим, то упор в книге будет делаться на них. Для рассмотрения задач будет использоваться среда MathCad 15.
Алгоритм МКЭ
Для того, чтобы решить уравнение необходимо провести предварительную подготовку. В общем и целом, алгоритм решения выглядит следующим образом:
1) Разбиение конструкции на конечные элементы;
2) Составление матрицы жёсткости каждого конечного элемента;
3) Перевод матрицы жёсткости из локальной системы координат в глобальную;
4) Составление глобальной матрицы жёсткости всей конструкции;
5) Приведение нагрузок к узловым;
6) Учёт закреплений;
7) Решение уравнения:
u = K– 1•P
Операция 1, на взгляд автора, интуитивно понятная и не требует пояснений.
Операции 2–6 будут подробно рассмотрены ниже.
Операция 7 будут рассмотрена подробно в примерах.
Составление матрицы жёсткости КЭ
Матрица жёсткости связывает перемещения узлов с узловыми силами, как уже говорилось в введении. Размер матрицы жёсткости N определяется количеством узлов и степенью свободы для каждого узла по формуле:
N = n•d
где N – размер матрицы жёсткости;
n – количество узлов в элементе;
d – количество степеней свободы элемента.
Например, для стержневого (ферменного) элемента, имеющего n = 2 узла, который по определению может только растягиваться или сжиматься, количество
где K – матрица жёсткости;
k11, k12, k21, k22 – элементы матрицы жёсткости.
Для конечных элементов, у которых количество степеней свободы больше единицы удобней представлять матрицу жёсткости поблочно. Например, для конечного элемента, у которого количество узлов n = 2 и количество степеней свободы d = 3матрицу жёсткости удобно представлять в виде:
где K – матрица жёсткости, размером [nxn]
k11, k12, k21, k22 – элементы матрицы жёсткости, которые из себя так же представляют матрицы размером [dxd]:
Такое представление матрицы жёсткости позволит легко и удобно получить матрицу жёсткости всей конструкции.
Матрица жёсткости, обычно, составляется в локальной системе координат этого элемента. Для перевода матрицы жёсткости в глобальную систему координат используется матрица направляющих косинусов по формуле:
Kглоб = T•K•
где Kглоб – матрица жёсткости в глобальной системе координат;
– матрица направляющих косинусов.
Рассмотрим матрицы жёсткости типовых конечных элементов.
Стержневой элемент
На рисунке 2 показан стержневой конечный элемент.
Рисунок 2. Стержневой конечный элемент
На рисунке 2 xy – локальная система координат, а XY – глобальная.
Стержневой конечный элемент имеет два узла и одну степень свободы. Матрица жёсткости в локальной системе координат вычисляется по формуле:
где E – модуль упругости материла;
F – площадь поперечного сечения стержня;
L– длина конечного элемента.
Книги из серии:
Без серии
Блуждающие огни
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
рейтинг книги
Третий
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Кир Булычев. Собрание сочинений в 18 томах. Т.3
Собрания сочинений
Фантастика:
научная фантастика
рейтинг книги
Полное собрание сочинений в одной книге
Проза:
классическая проза
русская классическая проза
советская классическая проза
рейтинг книги
Неудержимый. Книга XV
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На границе империй. Том 7. Часть 4
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
рейтинг книги
Попаданка в академии драконов 2
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
рейтинг книги
Я все еще князь. Книга XXI
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Предназначение
1. Радогор
Фантастика:
фэнтези
рейтинг книги
