Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В результате вы можете, чередуя природный уран (обычно обогащенный 235-м изотопом, но не очень сильно — до 1,5–2 %) и графит, добиваться во всем объеме, называемом «активной зоной», цепной реакции деления. При этом с помощью поглотителей вы можете регулировать эту реакцию, чтобы она была самоподдерживающейся, а не нарастающей (иначе говоря, чтобы число нейтронов, которые расходуются в реакции или покидают активную зону, было бы равно числу нейтронов, которые возникают в активной зоне во время реакции).

Таким образом, активная зона простейшего реактора —

это обогащенный, но не слишком уран 238, графитовый замедлитель и регулирующие стержни. В процессе работы выделяется какое-то количество нейтронов и гамма-квантов (их частично поглощает биозащита) и много тепла.

Тепло надо отводить от реактора, для этого его передают теплоносителю. В реакторах ВВЭР — теплоноситель — вода под высоким давлением. В реакторах РБМК охлаждение осуществляется в кипящем слое. Теплоноситель охлаждается или непосредственно в турбине (одноконтурные установки), или в теплообменнике (многоконтурные установки).

Необходимый объем теплоносителя определяется тепловой мощностью реактора и в промышленных установках очень велик. Для прокачки такого объема через активную зону используются ГЦН — главные циркуляционные насосы, представляющие собой едва ли не главный «хайтек» реактора. ГЦНы представляют собой высокооборотные турбоагрегаты высокой надежности.

Потеря теплоносителя — едва ли не худшее, что может случиться с реактором. По мере нагрева стабильность реакции падает, температура продолжает повышаться… при особо неблагоприятных условиях начинается расплавление активной зоны.

Реплика (студент, 22 года):

— А как же оружейный плутоний? Из реактора его можно было получить? Он сам там при взрыве не произвелся, шутя?

Докладчик (физик, 45 лет):

— Нет, конечно Реактор РБМК явился разве что наследником «оборонных» реакторов, в некотором смысле — продуктом конверсии. Он не был предназначен для производства плутония, и извлекать плутоний из его активной зоны было бы крайне дорогим и технологически неудобным процессом, хотя какое-то количество плутония в нем во время работы все-таки возникает.

Надо иметь в виду следующее обстоятельство. Уран 238, захватив нейтрон, может испытать не спонтанное деление, а бета-распад. Тогда ядро урана 238 превратится в ядро нептуния 239, которое, в свою очередь, бета-неустойчиво и превращается в плутоний 239. А 239-й плутоний — ядерное горючее, не уступающее урану 235, но более удобное в обращении. Поэтому все первые ядерные реакторы отнюдь не производили электроэнергию, реальным их назначением была трансмутация природного урана в оружейный плутоний.

Так вот, к 26 апреля 1986 года топливные сборки 4-го энергоблока ЧАЭС были «старыми»: в них накопилось не только много продуктов деления, но и трансураниды, включая тот же плутоний.

Реплика (разработчик компьютерных игр, 28 лет):

— Так раз реактор старый, физики-то знали, что на что там уже разложилось? И операторам сказали,

наверное…

Докладчик (физик, 45 лет):

— Не реактор старый, ему, простите, трех лет не было, а активная зона, большая часть которой осталась с первой загрузки, то есть работала в сильных нейтронных полях более двух лет.

Понятно, что характеристики активной зоны изменились, но операторы не имели ни малейшего представления, как именно, и совершенно не были этим озабочены. Что жаль… Они и на балконах загорали в день аварии…

Реплика (студент, 21 год):

— А зачем они его вообще испытывать-то решили? Такая старая уже, сложная вещь… зачем судьбу-то искушать? Пока бы работал… Потом заглушили тихо… Не понимаю? Зачем будить лихо?

Докладчик (физик, 45 лет):

Двадцать пятого апреля на ЧАЭС предполагалась не игра во взрыв реактора, а эксперимент с так называемым выбегом генератора. Суть эксперимента проста: при прекращении подачи пара на турбину (скажем, при серьезной аварии с разрывом трубопровода) турбина какое-то время вращается по инерции и генератор продолжает вырабатывать ток. Этот ток можно использовать для аварийного расхолаживания реактора и его остановки. Вообще-то говоря, штатно на АЭС на случай подобной аварии есть дизель-генераторы, задача которых — обеспечить снабжение током ответственных потребителей, прежде всего, систем управления реактором и ГЦНов. Но был большой интерес к тому, хватит ли энергии выбега для того, чтобы управлять реактором в момент ядерной аварии.

В принципе, такие опыты уже проводились, и не раз, но «понарошку», то есть без реального обесточивания реактора и с подготовленными к немедленному пуску дизелями. На этот раз инженеры захотели, а руководство станции согласилось провести «чистый эксперимент».

Сделать это было не очень просто. Дело в том, что если отключается турбина, то реактор автоматически блокируется: «падает» аварийная защита (211 стержней), в реактор немедленно начинает подаваться холодная вода из системы аварийного охлаждения реактора (САОР), запускаются дизель-генераторы и насосы аварийного питания реактора. Немного подумав, операторы все эти системы отключили, обесточили, а трубопроводы закрыли на задвижки.

Поскольку мы занимаемся только реперными фактами, я никакой оценки этому не даю: так было.

До 1.00 25 апреля 1986 года реактор работал на номинальной мощности 3.000 МВт тепловых. Затем мощность установки начали медленно снижать, и к 13.05 она составила 1.600 МВт тепловых, турбогенератор № 7 был отключен, питание собственных нужд переключено на турбогенератор № 8, который и был выбран для эксперимента.

В 14.00 система САОР была отключена.

Практически в тот же момент поступило распоряжение диспетчера Киевэнерго задержать отключение энергоблока от нагрузки. В течение последующих часов реактор работал с полностью отключенными системами аварийной защиты.

Поделиться:
Популярные книги

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Наследник хочет в отпуск

Тарс Элиан
5. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник хочет в отпуск

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Камень Книга одиннадцатая

Минин Станислав
11. Камень
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Камень Книга одиннадцатая

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Последний Паладин. Том 3

Саваровский Роман
3. Путь Паладина
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 3

Бестужев. Служба Государевой Безопасности. Книга третья

Измайлов Сергей
3. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга третья

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Повелитель механического легиона. Том I

Лисицин Евгений
1. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том I

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя