Чтение онлайн

на главную - закладки

Жанры

Мир 2.0: Переход бизнеса к Искусственному Интеллекту
Шрифт:

2.1. ИИ в финансах: управление рисками, автоматизация и персонализация

Финансовая отрасль – одна из первых, кто внедрил ИИ в повседневную практику. ИИ позволяет повысить точность прогнозирования, улучшить управление рисками и автоматизировать процессы, такие как торговля, кредитование и обслуживание клиентов.

Примеры использования ИИ в финансах:

Прогнозирование рисков и анализ данных: Финансовые учреждения, такие как банки и инвестиционные компании, используют ИИ для прогнозирования экономических трендов, оценки рисков и предсказания финансовых

колебаний. ИИ анализирует огромные объемы данных, включая рыночные показатели, новости, поведение клиентов и даже социальные медиа. Так, алгоритмы машинного обучения способны определить риск дефолта заемщика на основе его финансового поведения, даже если традиционные модели этого не могут.

Пример: Компания Kensho, использующая ИИ для анализа финансовых данных, предоставляет инструменты для предсказания рыночных изменений. Их система, основанная на машинном обучении, анализирует новостные потоки и другие источники данных, помогая инвесторам принимать более обоснованные решения.

Персонализированное обслуживание клиентов: ИИ позволяет создавать индивидуальные финансовые предложения для клиентов на основе их исторического поведения, предпочтений и потребностей. Чат-боты и виртуальные помощники, работающие на базе ИИ, помогают банкам и страховым компаниям предоставлять круглосуточную поддержку, автоматизировать ответы на стандартные вопросы и даже помогать в решении более сложных проблем.

Пример: Bank of America использует чат-бота Erica, который помогает клиентам управлять их финансовыми операциями, контролировать расходы и предлагать персонализированные советы по сбережениям и инвестициям. Система анализирует поведение клиентов и предлагает рекомендации, основанные на их финансовых целях.

Алгоритмическая торговля: ИИ активно используется в торговле для анализа финансовых рынков и выполнения сделок на основе сложных алгоритмов. Эти алгоритмы способны быстро реагировать на изменения на рынках и исполнять ордера в доли секунды, что делает торговлю более эффективной.

Пример: Two Sigma, одна из крупнейших хедж-фондовых компаний, использует ИИ и машинное обучение для анализа рыночных данных и создания торговых стратегий, которые помогают её клиентам получать прибыль, реагируя на рыночные колебания в реальном времени.

2.2. ИИ в здравоохранении: диагностика, лечение и управление

Здравоохранение – ещё одна сфера, где ИИ оказывает революционное влияние. От диагностики до разработки новых методов лечения, искусственный интеллект помогает медицинским специалистам работать быстрее и точнее, улучшая качество обслуживания пациентов и снижая затраты.

Примеры использования ИИ в здравоохранении:

Диагностика заболеваний: ИИ активно используется для анализа медицинских изображений (рентгеновские снимки, МРТ, КТ), а также для предсказания заболеваний на основе анализа данных пациента. Системы глубокого обучения могут выявлять патологические изменения, которые могут быть упущены человеческим глазом, что делает диагностику более точной.

Пример: Компания DeepMind (принадлежит Google)

разработала систему, которая анализирует результаты офтальмологических исследований и способна точно диагностировать заболевания глаз, такие как диабетическая ретинопатия и глаукома, на ранних стадиях, что помогает предотвратить потерю зрения.

Персонализированное лечение: ИИ помогает разработать индивидуальные планы лечения на основе данных о пациенте, его генетике и ответах на предыдущие терапии. Это позволяет выбирать наилучшие методы лечения для каждого пациента, повышая их эффективность и снижая побочные эффекты.

Пример: Компания IBM Watson Health разрабатывает системы, которые помогают врачам выбирать наиболее подходящее лечение для онкологических больных, анализируя данные о генетических мутациях и реакции на предыдущие курсы терапии.

Управление медицинскими записями: ИИ также используется для автоматизации обработки и анализа медицинских записей, что позволяет снизить нагрузку на медицинский персонал и улучшить качество обслуживания.

Пример: Врачебные практики и больницы используют ИИ для автоматической обработки и сортировки электронных медицинских карт, что помогает быстро находить важную информацию и ускоряет процесс постановки диагноза.

2.3. ИИ в логистике: оптимизация цепочек поставок и автономные системы

В логистике ИИ используется для оптимизации процессов доставки, управления складскими запасами и улучшения планирования маршрутов. Эти технологии позволяют компаниям значительно сокращать расходы, улучшать скорость доставки и повышать точность выполнения заказов.

Примеры использования ИИ в логистике:

Оптимизация цепочек поставок: ИИ помогает предсказать потребности в ресурсах, минимизировать запасы и снизить затраты на хранение. Алгоритмы ИИ могут анализировать данные о продажах, сезонных колебаниях и трендах, чтобы планировать поставки и управление запасами с максимальной точностью.

Пример: Компания Amazon использует ИИ для управления своими складами и цепочками поставок. ИИ анализирует данные о покупках и прогнозирует спрос на товары, что позволяет Amazon минимизировать время, необходимое для доставки заказов, и повысить эффективность складских операций.

Автономные транспортные средства: В логистике ИИ также используется для создания автономных автомобилей и дронов, которые могут выполнять задачи по доставке товаров без участия человека. Это позволяет значительно сократить время доставки и улучшить логистические операции, снижая затраты.

Пример: Waymo, дочерняя компания Google, разрабатывает автономные транспортные средства для перевозки грузов и пассажиров. Эти машины могут работать круглосуточно, сокращая время доставки и повышая безопасность на дорогах.

Маршрутизация и оптимизация доставки: ИИ помогает компаниям оптимизировать маршруты доставки, учитывая различные параметры, такие как пробки на дорогах, погодные условия, сезонные колебания и даже предпочтения клиентов.

Поделиться:
Популярные книги

Наследник

Майерс Александр
3. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Наследник

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Потомок бога

Решетов Евгений Валерьевич
1. Локки
Фантастика:
попаданцы
альтернативная история
аниме
сказочная фантастика
5.00
рейтинг книги
Потомок бога

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Адвокат вольного города

Парсиев Дмитрий
1. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Провалившийся в прошлое

Абердин Александр М.
1. Прогрессор каменного века
Приключения:
исторические приключения
7.42
рейтинг книги
Провалившийся в прошлое

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона