Мир-фильтр. Как алгоритмы уплощают культуру
Шрифт:
Речь здесь не о технологии – нельзя обвинять сам алгоритм в плохих рекомендациях, как нельзя обвинять мост в его инженерных недостатках. Чтобы огромные хранилища контента на цифровых платформах стали доступными, необходима определенная степень упорядочивания. Негативные аспекты Мира-фильтра, возможно, возникли потому, что технология применяется слишком широко, учитывая скорее интересы рекламодателей, нежели опыт пользователей. Рекомендации в том виде, в котором они сейчас существуют, больше не работают для нас; они вызывают у нас все большее отчуждение.
Мои первые значимые воспоминания о социальных сетях связаны с Фейсбуком, в котором я зарегистрировался после того, как поступил в колледж при Университете
Фейсбук стал едва ли не первым способом социального общения в интернете. Его предшественниками были Friendster и MySpace. Сервисы обмена сообщениями – Instant Messenger компании AOL и gChat компании Google – обеспечивали увлекательные способы общения с друзьями в режиме реального времени. К 2006 году я уже провел сотни часов на более старых форумах, где обсуждались видеоигры и музыка. Однако именно Фейсбук Цукерберга первым грамотно и последовательно связал онлайн-идентичность с офлайновым миром. Платформа поощряла пользователей использовать свои настоящие имена, а не таинственные псевдонимы, и влияла на реальные планы в маленьком мире колледжа: организацию вечеринок, планирование учебной деятельности и завязывание отношений. Тем самым она проложила путь к распространению социальной жизни в интернете для миллионов, а затем и миллиардов пользователей.
В сентябре 2006 года, вскоре после моего появления в Фейсбуке, там появилось одно из крупнейших нововведений – функция, которая определила его будущее в качестве онлайн-гипермаркета, торгующего всем подряд. Главным атрибутом платформы стала лента новостей, бегущий список обновлений, постов и оповещений. Ею нельзя было пренебречь – как только что построенным шоссе, прорезавшим тихую деревню. “Теперь всякий раз, когда вы входите в систему, вы получаете последние новости, связанные с активностью ваших друзей и социальных групп”, – сообщалось в официальном обновлении Фейсбука.
Патент на ленту новостей, поданный в том же году, но полученный только в 2012-м, описывал ее назначение: “Система и метод предоставляют динамически выбранный медиаконтент человеку, использующему электронное устройство в среде социальной сети”. Иными словами, лента новостей представляла собой поток информации, продиктованный алгоритмом, который определял, что именно показывать пользователю. В другом патенте была заявлена возможность “генерировать динамический контент, основанный на взаимоотношениях и персонализированный для участников социальной сети на веб-основе”. Сначала эта лента новостей представляла собой просто поток уведомлений об изменении статуса отношений и новых фотографий в профиле. Это не вызывало особых подозрений.
Более полное описание патентной заявки на ленту новостей говорит о системе совместной фильтрации, действующей в гораздо больших масштабах, нежели системы электронной почты 1990-х годов. Его стоит процитировать полностью, потому что оно предсказывает, во что превратится в следующем десятилетии большая часть онлайн-жизни (от социальных сетей до потоковой передачи данных и электронной торговли): множество автоматизированных лент, диктуемых в большей степени корпорациями, а не пользователями, которые постепенно формируют более пассивные
Элементы медиаконтента выбираются для пользователя на основе его отношений с одним или несколькими другими пользователями. Эти отношения пользователя с другими пользователями отражаются в выбранном медиаконтенте и его формате. Элементам медиаконтента присваивается некоторый порядок (например, на основе их предполагаемой важности для пользователя), и именно в этом порядке их представляют пользователю. Пользователь может изменить порядок элементов медиаконтента. Взаимодействие пользователя с медиаконтентом, доступным в среде социальной сети, отслеживается, и это взаимодействие используется для выбора дополнительных элементов медиаконтента для пользователя.
Этот фрагмент содержит все элементы алгоритмической ленты – системы, которая прогнозирует относительную важность информации для конкретного пользователя, определяемую на основе наблюдения за контентом, который он просматривал в прошлом; затем система продвигает в начало списка тот контент, который, на ее взгляд, с максимальной вероятностью будет столь же интересен. Цель – отфильтровать контент, чтобы выбрать наиболее вовлекающий. Это побуждает пользователя потреблять больше информации и подписываться на большее количество аккаунтов в целом. Социальные сети обрели жизнеспособность, поскольку пользователи могли чаще пользоваться ими и дольше оставаться на сайтах. Если наши друзья не активны в Фейсбуке (у меня, например, как раз такой случай), то и мы, скорее всего, снизим свою активность.
Сначала ленту новостей упорядочивали исключительно в хронологическом порядке, и на первом месте находились самые свежие обновления; однако постепенно она стала подчиняться более алгоритмической логике. По мере развития Фейсбука и увеличения активности пользователей, которые добавляли все больше связей, переходя от личных отношений к публикациям и брендам, объем отдельных обновлений увеличивался. Со временем обычные заметки от друзей дополнились сообщениями от групп, ссылками на новости и объявлениями о распродажах. Обычные пользователи уже не могли рассчитывать, что им удастся следить за хронологической лентой при таком объеме и разнообразии сообщений, но даже если бы попытались, то их либо завалило бы информацией, либо они пропустили бы важное сообщение – что могло вызвать недовольство платформой. В конце концов масштаб и скорость потребления в Фейсбуке привели к тому, что агрессивная алгоритмическая фильтрация стала необходимой.
В 2009 году в Фейсбуке появилась кнопка Like в виде поднятого большого пальца; она стала показывать, насколько пользователю интересен тот или иной контент. Порядок в ленте определяла вовлеченность пользователей, измеряемая лайками, комментариями и предыдущими взаимодействиями аккаунтов между собой. Эта алгоритмическая система получила название EdgeRank, и Фейсбук определил ее основные параметры: совместимость, вес действий и время. Под действием понималось любая деятельность людей в Фейсбуке, которая затем отправляется в ленту новостей в виде фиксируемого обновления. Совместимость отражала степень связи пользователя с автором поста и силу этой связи (например, постоянное комментирование постов друзей). Комментарий оценивался выше, чем лайк, а недавние взаимодействия – выше, чем старые. Показатель веса оценивал различные категории взаимодействий: обновление у друга, разместившего новую фотографию, могло иметь больший вес для алгоритма, нежели размещение ссылки на новость или вступление в новую группу. Время отражало возраст действий: при прочих равных условиях недавние действия с большей вероятностью оказывались в верхней части ленты новостей, нежели старые. Показатель EdgeRank не оставался вечным, как результат баскетбольного матча в турнире; он постоянно менялся. И эти три категории – не просто отдельные, нейтральные единицы данных; это совокупность данных, упакованных и интерпретированных Фейсбуком особым образом.