Чтение онлайн

на главную - закладки

Жанры

Мир в ореховой скорлупе

Хокинг Стивен

Шрифт:
empty-line/>

Рис. 7.2.

Слева. Классический неделимый атом.

Справа. Атом с электронами вращающимися вокруг ядра, которое состоит из протонов и нейтронов

Протон состоит из двух и-кварков, каждый из которых несет положительный заряд величиной две трети [от заряда протона. — Перев. ] и одного d-кварка с отрицательным зарядом величиной в одну треть. Нейтрон состоит из двух d-кварков, каждый из которых несет отрицательный заряд величиной в одну треть, и одного и-кварка с положительным зарядом в две трети.

Рис. 7.3 Протон (вверху)

и нейтрон (внизу)

Исследования в области атомной физики в течение первых трех десятилетий прошлого века позволили нам продвинуться в понимании строения материи до расстояний порядка миллионной доли миллиметра. Затем мы открыли, что протоны и нейтроны состоят из еще меньших частиц, называемых кварками (рис. 7.3).

Наши недавние исследования в области ядерной физики и физики высоких энергий позволили добраться до масштабов, еще в миллиард раз меньших. Может сложиться впечатление, что так будет продолжаться вечно, что мы будем открывать новые структуры все меньшего и меньшего масштаба. Но у этой последовательности есть предел, как и у вложенных друг в друга матрешек (рис. 7.4).

Рис. 7.4–7.5. Размер ускорителя для изучения столь малых расстояний, как план-ковская длина, оказался бы больше диаметра Солнечной системы.

Каждая матрешка отвечает теоретическому пониманию природы до определенного масштаба. В каждой из них содержится кукла меньшего размера, соответствующая теории, которая описывает природу на более коротких расстояниях. Но в физике существует самая маленькая фундаментальная длина — планковская — масштаб, в котором Вселенная, возможно, описывается М-теорией.

И все же есть одна поразительная новая разработка, с помощью которой открыть по крайней мере некоторых драконов М-теории можно гораздо проще (и дешевле). Как говорилось в главах 2 и 3, в сети математических моделей М-теории пространство-время имеет 10 или 11 измерений. До недавнего времени считалось, что 6 или 7 лишних измерений должны быть свернуты до очень малых размеров. Это можно уподобить человеческому волосу (рис. 7.6).

Разглядывая волос под лупой, вы заметите, что у него есть толщина, однако для невооруженного глаза он выглядит как линия, имеющая длину, но никаких других измерений. Подобным образом может обстоять дело с пространством-временем: в человеческих, атомных и даже ядерных масштабах оно может выглядеть четырехмерным и почти плоским. Но если мы прозондируем его на очень коротких расстояниях с помощью частиц чрезвычайно высокой энергии, то увидим, что пространство-время 10- или 11-мерно.

Рис. 7.6.

Для невооруженного глаза волос выглядит линией. Его единственным измерением кажется длина. Аналогично пространство-время может выглядеть четырехмерным, но при зондировании высокоэнергетическими частицами оказаться 10- или 11-мерным.

Электрическое взаимодействие должно быть привязано к бране и ослабевать со скоростью, обеспечивающей устойчивость орбит электронов вокруг атомного ядра.

Если все дополнительные измерения очень малы, их будет крайне трудно наблюдать.

Однако недавно появилось предположение, что одно или несколько дополнительных измерений могут оказаться относительно большими или даже бесконечными. Эта идея имеет важное преимущество (по крайней мере, для таких позитивистов, как я), поскольку она допускает проверку на следующем поколении ускорителей элементарных частиц или путем высокоточных измерений гравитационных сил на коротких расстояниях. Такие наблюдения могут либо фальсифицировать теорию, либо экспериментально подтвердить наличие других измерений.

Большие дополнительные измерения — это захватывающая новая область исследований в наших поисках окончательной модели или теории. Они могли бы указать, что мы живем в 4-бранном мире — на четырехмерной поверхности или бране в пространстве-времени большей размерности.

О ДИВНЫЙ БРАНЫ МИР

Материя и негравитационные, например электрические, силы могут быть привязаны к бране. То есть все, что не имеет отношения к гравитации, происходит так же, как в четырех измерениях. В частности, сила электрического взаимодействия между ядром атома и обращающимися вокруг него электронами будет уменьшаться с расстоянием как раз с такой скоростью, чтобы электроны не падали на ядро и атомы были устойчивыми (рис. 7.7).

Рис. 7.7. Миры на Бране

Не будет противоречий и с антропным принципом, гласящим, что Вселенная должна быть пригодна для разумной жизни: если бы атомы были нестабильны, мы не могли бы наблюдать Вселенную и интересоваться, почему она четырехмерна.

С другой стороны, гравитация в форме искривленного пространства может пронизывать все многомерное пространство-время. Это означало бы, что гравитация ведет себя иначе, чем остальные известные нам силы: распространяясь на дополнительные измерения, она должна ослабевать быстрее, чем мы ожидаем (рис. 7.8).

Рис. 7.8. Гравитация может распространяться в дополнительные измерения, так же как и вдоль браны, и в таком случае должна ослабевать с расстоянием быстрее, чем в четырех измерениях.

Более быстрое ослабление силы гравитации на больших расстояниях сделало бы орбиты планет нестабильными. Планеты либо упали бы на Солнце (а), либо вырвались из пут его притяжения (б).

Если бы это более быстрое спадание силы тяготения продолжалось на астрономических расстояниях, то мы могли бы заметить его проявление на орбитах далеких планет. Фактически, как отмечалось в главе 3, они оказались бы нестабильными: планеты либо падали бы на Солнце, либо улетали в темное и холодное межзвездное пространство (рис. 7.9).

Рис. 7.9

Однако этого не происходит, если дополнительные размерности заканчиваются на другой бране, не слишком далеко от той, на которой живем мы. Тогда на расстояниях, превышающих то, которое разделяет браны, гравитация не сможет свободно распространяться, а окажется фактически привязана к бране, подобно электрическому взаимодействию, и в масштабах планетных орбит будет спадать с правильной скоростью (рис. 7.10).

Поделиться:
Популярные книги

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Я уже князь. Книга XIX

Дрейк Сириус
19. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я уже князь. Книга XIX

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

Кровь эльфов

Сапковский Анджей
3. Ведьмак
Фантастика:
фэнтези
9.23
рейтинг книги
Кровь эльфов

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона