Мир вокруг нас
Шрифт:
Аналогичные процессы имеют место и в ядре (т. е. иногда оказывается, что взаимодействия между нуклонами, делают более энерговыгодным нахождение некоторых нуклонов на более высоких энергоуровнях, что мы неоднократно видели, в т. ч. на примере гораздо более лёгких ядер (вплоть до изотопов водорода)).
Далее: Наконец, рассмотрим строение последнего стабильного изотопа следующего элемента, палладия-110, см. табл. 42 и рис. 170. Этот изотоп отличается от последнего стабильного изотопа предыдущего элемента, рутения-104, на целых четыре нейтрона, что объясняется возможностью поворота образуемого альфа-кластера наружу, благодаря двум добавленным протонам (рис. 170).
Таблица 42 [8]
Стабильные изотопы и изотопы с периодом полураспада > времени от Большого Взрыва (1,38x1010 лет), палладия
Рис. 170
В
Итак, мы рассмотрели, на ряде примеров, наглядное строение ядер тяжёлых элементов пятого ряда таблицы Менделеева. Полученные из простейших соображений, варианты структур ядер и переходов между ядрами, как видно — объясняют различные свойства ядер 5-го ряда элементов (включая времена жизни, энергии связи, способность ядер эффективно связывать то или иное число нейтронов).
Далее:
О строении ядер f-элементов
Рассмотрим ещё более тяжёлые ядра, т. н. f-элементов, или лантаноидов, расположенных в 6-м ряду таблицы Менделеева, см. табл. 43.
Таблица 43
Первые шесть рядов таблицы Менделеева (примечание: в отдельную строку внизу — вынесены лантаноиды (f-элементы))
Первый чётный f-элемент — церий. Возможное строение ядра последнего стабильного изотопа этого элемента, церия-142 — показано на рис. 171, см. также табл. 44.
Рис. 171
Таблица 44 [8]
Стабильные изотопы и изотопы с периодом полураспада > времени от Большого Взрыва (1,38x1010 лет), церия
В предполагаемой конфигурации ядра церия-142, на рис. 171, протоны из альфа-частиц 3d и 3sp, не задействованных в связывании других альфа-кластеров — перешли на периферию ядра, на более высокие энергоуровни, где могут связать дополнительные нейтроны. На месте же ушедших протонов — остались нейтроны, связанные непосредственно с альфа-частицами, и нейтроны, зажатые между непосредственно связанными нейтронами, т. е. связанные в два шага (см. рис. 171). Зажатые нейтроны, в столь тяжёлом ядре, содержащем почти полторы сотни нуклонов — оказываются стабилизированы, т. к. образующийся т. о. нейтронный мост — препятствует стремлению ядра к спонтанному делению (разрыву ядра электрическим отталкиванием протонов). Этот нейтронный мост, в центральной части ядра, и два аналогичных моста ближе к периферии (рис. 171), «как клей», связывают центральную и периферические части ядра, что выгодно. Связанные в мостах, нейтроны, и приводят к тому, что ядро церия-142 — содержит на целых 26 нейтронов больше, чем протонов, и при этом оказывается (практически) стабильным.
Далее, возможно добавление ещё по два нейтрона, в два положения, где они всё ещё могут быть связаны непосредственно, см. рис. 172. Т. о. сперва получаем церий-144, с относительно высоким (в
Рис. 172
Таблица 45 [8]
Периоды полураспада первых изотопов церия, следующих за последним стабильным
В ядре церия, обратим внимание на экономность расположения альфа-частиц: в центральных областях ядра, нет ни одного альфа-кластера, который бы не служил местом прикрепления другого альфа-кластера. Иными словами, нельзя ни одну альфа-частицу изъять, чтобы ядро не распалось на две части. Все альфа-частицы в ядре, как видно — абсолютно необходимы, т. е. число их — минимально необходимое (протоны от остальных, как уже говорилось — перешли на периферию ядра, для связывания дополнительных нейтронов, а также снижения электрического отталкивания, за счёт увеличения расстояния между протонами в ядре).
На рис. 173 — показано направление связи альфа-частиц в ядре. Т. о. виден как бы скелет ядра, состоящий из сильно связанных друг с другом, альфа-частиц. (В органических молекулах — есть похожее явление, и там тоже говорят о структурном скелете, но состоящем из атомов углерода (т. н. углеродный скелет молекулы)).
Рис. 173
На рис. 174 — показаны альтернативные конфигурации ядра церия-142. Конфигурация на рис. 174-б — очевидно снижает электрическое отталкивание между протонами периферических кластеров и ядром в целом, т. к. располагает их дальше друг от друга, что представляется выгодным.
Рис. 174
Далее: Рассмотрим следующий чётный элемент, неодим. Последний (практически) стабильный изотоп этого элемента, неодим-150 [8], можно построить, как показано на рис. 175.
Рис. 175
Неодим-150 — содержит на 30 нейтронов больше, чем протонов, и в конфигурации на рис. 175-а, в нём можно видеть четыре нейтронных моста. Вообще, ядро может связать и гораздо больше нейтронов: см. например, неодим-160, на рис. 176, см. также табл. 46. На рис. видно, что в два шага, ядро неодима, (геометрически) связывает 40 нейтронов сверх протонов (и фактически, может связать ещё больше, — в «два с половиной» или три шага (пример: 161Nd, табл. 46)). Наглядная геометрия ядра, как видно — определяет возможности ядра по связыванию нейтронов.
Рис. 176
Таблица 46 [8]
Последние известные (чётный и нечётный) изотопы неодима
Далее: Рассмотрим следующий (чётный) f-элемент — самарий. Последний его стабильный изотоп, самарий-154 [8] — связывает столько же нейтронов, сверх протонов, сколько и аналогичный изотоп предыдущего элемента, неодим-150 (в то время как при переходе от церия к неодиму, неодим связывал на 4 нейтрона (сверх протонов) больше, чем церий). Это можно объяснить добавлением протонов, при образовании самария-154 — без появления нового нейтронного моста (он уже образован), притом в дальнюю часть ядра (где имеется относительный недостаток протонов из-за их перехода в ближнюю (= правую) часть), см. рис. 177. Это — несколько восстанавливает симметрию ближней и дальней частей ядра, хотя в целом, ядро ещё остаётся сильно асимметричным (в то время как ядро церия-142 было симметричным).