Чтение онлайн

на главную - закладки

Жанры

Млечный Путь, 2012 №02
Шрифт:

Через нее многомерный и глубокий талант Р. И. Пименова открывает читателю совершенно неожиданное видение будущей естественнонаучной картины Мироздания. Вместе с тем, ее судьба каким-то мистическим образом подобна судьбе самого автора.

Она размещена в Интернете, но ни один «серьезный» математический или философский журнал или сборник так и не предоставил своего пространства для ее размещения. И, по сообщению Н. А. Громова, соратника и ученика Р. И. Пименова, «в списке научных работ Р. И. Пименова… такая статья не значится».

Не вдаваясь в детали, сообщу, что при содействии известных философов И. А. Акчурина, В. И. Аршинова, В. В.

Тарасенкова она появилась в одном из разделов сайта Института философии РАН — на сайте Московского международного синергетического форума

Второй попыткой прорыва к читателю является файл, выставленный на сайте Российского междисциплинарного семинара по темпорологии.

http://www.chronos.msu.ru/RREPORTS/pimenov_diffury/pimenov_diffury.htm

Размышления о прочитанном привели к убеждению — осознание «внематематического смысла» специальных математических понятий меняет картину мироздания.

Если я прав, т. е. если в математике возникли действительно «взрывоопасные» для современной научной картины мира идеи, то знать об этом должны все, кто основывает свое мировоззрение на научной базе. И сами математики, и физики, и лирики и даже бюрократы всех степеней — все, кто живет и строит свои жизненные планы, не сомневаясь, что, если сверкнула молния, то вслед за этим громыхнет гром, что, если удастся весело доказать читателю, что понедельник начинается в субботу, — обязательно станешь знаменитым, что, наконец, «если долго мучиться, то что-нибудь получится».

Конечно, понять специфику устройства таких «математических мин» для человека, далекого от новейших открытий естественных наук, совсем не просто. Но, как говаривал Евклид еще 2300 лет назад, «в геометрии нет особого пути даже для царей». И 23 века поисков таких путей к успеху не привели. Так что тот, кто решит проверить правильность моего убеждения об идеях Р. И. Пименова, должен помнить мудрость М. Е. Салтыкова-Щедрина: «Не к тому будь готов, чтобы исполнить то или другое, а к тому, чтобы претерпеть».

Тех, кого не испугало это предупреждение, приглашаю последовать за мной в мир абстракций и чисел. Итак, что же новое открыл Р. И. Пименов в математическом инструментарии естествознания?

Принцип причинности

Часто простое кажется вздорным, Черное белым, белое черным. Мы выбираем, нас выбирают, Как это часто не совпадает… М. Танич

Если перевести содержание эпиграфа на физико-математический язык, то окажется, что эти строки выражают чрезвычайно сложную и фундаментальную философскую и естественнонаучную проблему ВЫБОРА. Ее можно сформулировать так:

нас ли выбирают обстоятельства (законы природы и начальные условия) для совершения тех или иных действий, или мы сами выбираем варианты поведения из предоставленных нам законами природы возможностей?

Первый вариант отражает концепцию детерминизма — движения по времени в соответствии с «объективными законами природы», предписывающими однозначную цепочку событий: причина — следствие. Пример: если

шарик находится на гладкой горке (причина), то он обязательно скатится к определенной точке ее подножия (следствие). И, зная начальное его положение и «географию горки», мы по законам механики всегда можем вычислить положение в любой последующий миг. А если он находится на вершине? По какому склону он покатится? И тут детерминизм дает четкий ответ — ни по какому! Но стоит сместить шарик чуть-чуть (на бесконечно малое расстояние, на «дифференциал» от вершины) и точно знать, куда именно мы его сместили, детерминистические законы механики снова точно укажут результат его движения.

И в простых, и в более сложных случаях «наличие в природе дифференциала» определяет возможность предсказания поведения всей системы.

Напомню читателю смысл этого фундаментального математического понятия. По сути оно очень просто. Утверждается, что «кривую» линию можно заменить последовательностью маленьких отрезков прямой. Причем таким образом, что основные математические свойства исходной линии (ее суммарная длина, области пространства, через которые она проходит) почти не изменяются. Важно подчеркнуть, что это «почти» может быть сделано таким маленьким, что отличие не будет обнаружено при любой заданной степени точности. И до середины XX в. считалось, что такую операцию можно проделать с любой кривой.

Дифференциал — это и есть тот отрезок прямой, которым заменяют истинную кривую на коротком участке с соблюдением указанного условия. Коротком настолько, что его называют «бесконечно малым». Естественно при этом, что дифференциал не имеет никакой внутренней структуры и равномерно заполнен точками.

Физическим следствием такой математической процедуры является появление принципа причинности — если в данной точке кривой лежит начало «отрезка дифференциала» (причина), то в его конце однозначно возникает другая точка — следствие.

Второй вариант — это вариант со «свободой воли». Квантовая неопределенность — это только другая форма этого понятия. Здесь именно она, таинственная, но реальная способность к «свободному выбору» значения пары «причина — следствие» определяет направления движения во времени и творит действительность.

Что же осознал Р. И. Пименов? Оказалось, что техническое в математике понятие дифференциала незаслуженно заняло место физико-философского принципа причинности. Почему это произошло?

Непрерывность и причинность

Я много лет пиджак ношу, Давно потерся и не нов он. И я зову к себе портного И перешить пиджак прошу. Б. Окуджава

Теперь перейдем к разбору сути эссе Р. И. Пименова. Оно посвящено обсуждению применимости традиционного математического аппарата к физической природе вещей.

Аппарат этот чрезвычайно сложен. Но, вслед за Р. И. Пименовым, нас будет интересовать «дифференциально-топологический этаж» математического здания. О дифференциале было сказано выше. Теперь рассмотрим еще два математических понятия — топология и гладкость.

Поделиться:
Популярные книги

Крепость над бездной

Лисина Александра
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Крепость над бездной

Новик

Ланцов Михаил Алексеевич
2. Помещик
Фантастика:
альтернативная история
6.67
рейтинг книги
Новик

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Эволюционер из трущоб. Том 2

Панарин Антон
2. Эволюционер из трущоб
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Эволюционер из трущоб. Том 2

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Убивать чтобы жить 7

Бор Жорж
7. УЧЖ
Фантастика:
героическая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 7

1941: Время кровавых псов

Золотько Александр Карлович
1. Всеволод Залесский
Приключения:
исторические приключения
6.36
рейтинг книги
1941: Время кровавых псов

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4