Чтение онлайн

на главную - закладки

Жанры

Монизм как принцип диалектической логики

Науменко Л. К.

Шрифт:

Обратимся прежде всего к собственно математическому аспекту, оставляя пока в стороне проблему реальности.

В этом аспекте развитие математики подчиняется принципу монизма, требующему развивать науку в ее собственной, присущей ей внутренней связи. В чем же состоит эта «собственная связь»?

Как известно, Н.И. Лобачевский назвал свою геометрию «воображаемой» геометрией, т.е. геометрией «математически возможного» пространства. Однако это пространство он не мог себе представить даже в воображении. То, что математически представлялось ему естественным и необходимым, физически не было ясно ни ему самому, ни, тем более, его современникам.

Но если Лобачевский уже понимал различие, существующее между геометрией как математикой и геометрией как физикой, то этого

нельзя сказать о его современниках, даже о таких, как Н.В. Остроградский, которые расценивали «воображаемую» геометрию как продукт больного воображения, как нечто абсурдное и химерическое.

Геометрия Лобачевского для них оказалась недействительной именно потому, что она была недействительна физически, а не математически, потому что описываемое в ней пространство нельзя было наглядно представить как существующее. В действительности же в задачу геометрии как математики и не входит описание существующего физического пространства, если ее рассматривать с имманентной точки зрения. Пространственную модель геометрии как математической системы в одних случаях можно построить, в других это оказывается прямо невозможным.

(Что касается геометрии Лобачевского, то модель плоскости, на которой осуществляются ее теоремы, была построена в 1865 г. итальянским математиком Бельтрами. Это так называемая псевдосферическая поверхность, на которой геометрия Лобачевского осуществляется лишь частично. Более совершенную модель построил позднее Ф. Клейн (геометрия в круге при сохранении неевклидовой метрики). Наконец, для всей геометрии Лобачевского была построена универсальная аналитическая модель – как применение теории Ф. Клейна и С. Ли о группах непрерывных преобразований. Для других, скажем, для бесконечномерных геометрий, построить пространственную модель оказывается вообще невозможным.)

Изыскание физического, эмпирического смысла геометрических понятий в задачу геометрии как математики не входит. Ее задачей является лишь выведение определенности «сложного выражения из определенности его элементарных выражений; ее интересует лишь взаимное отношение выводимости этих выражений, а не эти образы сами по себе. Поэтому, строя свою систему аксиоматики геометрии, Гильберт исходит из убеждения, что абсолютный смысл таких геометрических понятий, как точка, прямая и плоскость, не имеет никакого реального значения; и если бы кто-либо никогда не видел ни точки, ни прямой, ни плоскости, он «построил бы геометрию не хуже нас».

Сколько ни был бы нам интуитивно известен такой геометрический образ, как прямая, геометрически он действителен для нас только как выражение, которое удовлетворяет определенной аксиоматике, – аксиоматике прямой. Сколько нам ни были бы интуитивно очевидны свойства круга, для геометрии даже простейшая теорема о круге – что все его диаметры равны, так как они вдвое больше радиусов, которые равны по определению, – не обосновывается тем, что «круг повсюду одинаково круглый», т.е. постоянством его непосредственного имплицитного свойства, а постоянством его радиуса.

Математическое исследование состоит в анализе отношений математических величин. Истинность математических теорем, в которых рассматриваются взаимные отношения таких геометрических «объектов», как точки, прямые и плоскости, не зависит от того абсолютного значения, которое мы приписываем этим объектам. Так, в проективной геометрии принят так называемый «принцип двойственности», состоящий в том, что при замене слова «точка» словом «прямая» все ее теоремы сохраняют свою силу. Аналогично можно рассматривать в качестве точек шары или тройки чисел (последнее – при аналитическом истолковании геометрии). Все геометрические теоремы, выведенные для геометрических объектов в их обычном смысле, сохраняют свое значение. Отношения, остающиеся тождественными при различных интерпретациях системы, называются изоморфными. В математике поэтому говорят, что она изучает свои «объекты» «с точностью до изоморфизма».

Какого же рода отношения рассматриваются в геометрии, и что представляют собой относительные свойства ее объектов? Теоретическая система

гомогенна. Это значит, что значение всякого ее элемента определяется его отношением ко всем другим элементам системы и к системе в целом; высказывание об элементе является высказыванием и о системе. Сама система есть лишь интегральное выражение факта взаимной определяемости ее элементов.

Сказать нечто об одной из сторон или углов треугольника – значит вместе с тем определить его другую сторону или угол. Сказать нечто о радиусе – значит тем самым определить и окружность. Окружность, конечно, не то же самое, что радиус. Это прекрасно знает, скажем, инженер, когда он строит маховое колесо двигателя. Но для геометра окружность есть именно такой образ, свойства которого определяются как производные от радиуса, как преобразование определенности радиуса. Ее самостоятельная определенность не принимается во внимание.

В аксиоматике теории вырабатывается система средств выражения для данной области объектов. Все, что рассматривается в этой области, должно быть выражено в ее системе средств, так сказать, сконструировано из этого «материала». Все, что не может быть сконструировано подобным образом, лежит вне пределов данной науки и потому оказывается для нее недействительным. Оно существует лишь по отношению к данной системе средств.

На этот счет можно привести следующий пример.

В аналитической геометрии Декарта устраняются «трансцендентные» кривые, которые с точки зрения их построения в созерцании не представляют собой чего-либо особо сложного. Однако при тех средствах анализа, которыми располагал Декарт, их построение оказалось невозможным. Введение нового способа анализа пространственных форм и соотношений с помощью координатной системы ограничивает область геометрии. Разработка более гибких и универсальных средств позволяет рассмотреть в геометрии и первоначально устраненные «трансцендентные» кривые.

С этой точки зрения можно рассмотреть и всю историю геометрии. Как известно, число геометрических образов, рассматриваемых в «Началах» Евклида, невелико: прямая, плоскость, окружность, сфера, цилиндр, конус и т.п. Разработанные же в XVIII в. методы дифференциальной геометрии позволяют рассмотреть бесконечное множество различных линий, поверхностей и их совокупностей. Условием этого анализа является только дифференцируемость функций, входящих в уравнения этих образов.

При определении какого-либо свойства реальных объектов, скажем, пространственного свойства, мы имеем дело с некоторой системой понятий, в которых оно выражается. Эта система понятий определенна. Свойство становится определенным также и теоретически посредством некоторой операции определения. Эта операция состоит в выражении его через преобразование уже имеющейся системы средств выражения. Если в эмпирическом познании определенность данного свойства рассматривается как данная, как продукт физических процессов, совершающихся независимо от мышления, то в логическом познании определенность некоторого созерцаемого свойства есть не исходный пункт, а продукт известной операции выражения и определения. В математике поэтому принимаются во внимание только такие предложения, которые представляют собой продукт преобразования некоторой принятой системы выражения, продукт композиции ее элементов. Акт математического познания поэтому является с логической стороны актом творческим, актом продуцирования данного свойства, его построения: в некоторой данной системе средств, но не актом описания. Это продуцирование, однако, является продуцированием не самой «вещи», но только ее теоретического образа, ее «модели».

Всякий геометрический объект определяется относительно некоторой однородной среды, закономерности которой, повсюду одинаковые, обусловливают свойства конкретного объекта, рассматриваемого в ней. Так, мы убеждены, что все геометрические фигуры суть некоторым образом «одно и то же», что они внутренне тождественны. Только при этом условии и возможно строго математическое познание.

Историческое развитие геометрии состояло в том, что это убеждение все более и более овладевало умами геометров.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Надуй щеки! Том 3

Вишневский Сергей Викторович
3. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 3

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Фею не драконить!

Завойчинская Милена
2. Феями не рождаются
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Фею не драконить!

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Убивать чтобы жить 9

Бор Жорж
9. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 9

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2