Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Шрифт:
Применение теории информации позволило сделать телефонные линии более эффективным средством передачи сообщений. [117] Но роль, которую сыграла теория информации, отнюдь не ограничивается увеличением прибыли телефонных компаний. Определение информации через простые физические состояния (такие, как положения "вкл" и "выкл" электронного переключателя) означало, что теперь информацию можно хранить на физических носителях, то есть на цифровых запоминающих устройствах. Долгое время для хранения информации использовались книги, написанные и читаемые людьми. Новые запоминающие устройства позволяли записывать и считывать информацию машинам, от которых не требовалось понимания смысла записываемых и считываемых знаков. И конечно, эти новые запоминающие устройства можно было наполнять уже новым содержанием.
117
Хотя
Уже в 1943 году Уоррен Маккаллок и Уолтер Питтс выдвинули новую нейронную доктрину, согласно которой нейрон – это элементарная функциональная единица мозга, служащая для обработки информации. Маккаллок и Питтс также предположили, что из обширных сетей простых электронных "нейронов" можно сконструировать искусственный мозг. Первые компьютеры были сделаны не по образцу нейронных сетей, однако, подобно искусственным нейронным сетям, они представляли собой устройства, способные хранить, передавать и видоизменять информацию в соответствии с определенными правилами. Когда в сороковых годах были сконструированы первые такие компьютеры, их сразу стали называть "электронные мозги". Такие машины можно было научить делать то, что делает наш мозг.
На что же способны хитроумные устройства?
В 1956 году наука о создании устройств, способных делать разные хитроумные вещи, получила название "искусственный интеллект". Исследовательская программа этой науки, как и любой другой, предполагала, что начать нужно с решения самых легких проблем. Восприятие окружающего мира казалось сравнительно легким делом. Почти все люди умеют с легкостью читать рукописный текст и узнавать лица, и поначалу казалось, что создать машину, способную читать рукописный текст и узнавать лица, должно быть тоже не особенно сложно. Игра в шахматы – напротив, очень сложное дело. Очень немногие люди способны играть в шахматы на уровне гроссмейстера. Создание машин, умеющих играть в шахматы, лучше было отложить на потом.
Прошло пятьдесят лет, и компьютер, предназначенный для игры в шахматы, выиграл у чемпиона мира. [118] Проблема научить машину восприятию, напротив, оказалась очень сложной. Люди по-прежнему умеют узнавать лица и читать рукописный текст намного лучше, чем машины. Почему же эта проблема оказалась такой сложной? Оказывается, даже моей способностью видеть, что сад у меня за окном полон разных объектов, очень сложно наделить машину. Тому есть много причин. Например, видимые объекты перекрывают друг друга, а некоторые из них еще и движутся.
118
В 1997 году сконструированный корпорацией IBM суперкомпьютер Deep Blue выиграл в шахматы у Гарри Каспарова, которого многие считают одним из величайших шахматистов всех времен. Компьютер победил во многом благодаря своей способности проводить сложные математические расчеты. Он мог анализировать 200 миллионов ходов в секунду. Люди так в шахматы не играют. — Примеч. авт.
Откуда я знаю, что это за коричневое пятно – часть забора, или дерева, или птицы? Мой мозг решает все эти удивительно сложные задачи и заставляет меня думать, что я воспринимаю мир, не прилагая никаких усилий. Как же он это делает?
Развитие теории информации и цифровых компьютеров показало, что наше восприятие – дело очень сложное. Но наш мозг с ним справляется. Означает ли это, что цифровой компьютер не может служить хорошей моделью мозга? Или нам нужно найти какие-то новые способы обработки информации и научить им компьютеры?
Проблема с теорией информации
Создание теории информации было очень важным достижением. Оно позволило нам понять, как физическое явление – электрический импульс – может стать психическим явлением – нервным сигналом (сообщением). Но с первоначальной формулировкой была связана одна принципиальная проблема. Предполагалось, что объем информации в любом сообщении или, в более общем случае, в любом раздражителе полностью определяется этим раздражителем. Прекрасная концепция информации, но из нее следуют некоторые парадоксальные вещи.
Вспомним,
Рис. 5.2. Мы лучше всего распознаем объекты по их контурам.
Мы можем легко узнать лицо по одним контурам (справа), но улыбка лучше распознается на размытом изображении (слева).
Но из этой формулировки следует парадокс. Согласно этому определению самым информативным изображением будет такое, в котором мы никак не сможем угадать следующий элемент, на который, двигаясь, упадет наш взгляд. То есть это изображение, целиком состоящее из точек, окрашенных случайным образом. Такие изображения мы видим, когда у нас что-то не так с телевизором и на его экране возникает рябь, так называемый "снег".
Рис. 5.3. Высокоинформативный набор случайных точек.
Это изображение несет максимум информации, так как нельзя предсказать, какой цвет имеет та или иная точка.
Как справедливо отмечает профессор английского языка, когда я показываю ей иллюстрации, сгенерированные компьютером, это самые скучные изображения, которые ей доводилось видеть. Проблема концепции, которую дает нам теория информации, состоит в том, что в ней никак не учитывается субъект, смотрящий на изображение. [119] В рамках этой концепции все смотрящие равны, и их восприятие раздражителя должно быть одинаковым. Но мы-то знаем, что все смотрящие разные. Они отличаются разным прошлым опытом и разными ожиданиями. Эти отличия сказываются на нашем восприятии. Рассмотрим черный квадрат на рис. 5.4. Для некоторых смотрящих это не просто черный квадрат. Это "Черный квадрат" Казимира Малевича, выставленный им в 1915 году первый образец отвлеченного, абстрактного искусства русских супрематистов. В данном случае знание того, что это значительное произведение искусства, меняет наше восприятие объекта, [120] несмотря на то что объем содержащейся в нем информации при этом не меняется. Этот простейший пример показывает, как наши исходные знания влияют на наше восприятие.
119
Я преувеличиваю несовершенство теории информации. Идеального байесовского наблюдателя, с которым мы вскоре познакомимся, можно описать и в терминах теории информации: он максимизирует полное количество информации, общей для окружающего мира и его самого. — Примеч. авт.
120
А может быть, и не меняет. — Примеч. авт.
Рис. 5.4. Казимир Северинович Малевич "Черный квадрат" (начало XX века).
Преподобный Томас Байес
Как же тогда мы можем видоизменить теорию информации, чтобы она учитывала различия в опыте и ожиданиях наблюдателей ? Нам нужно сохранить нашу идею, что информативность сообщения (или изображения) определяется его новизной и неожиданностью. Но теперь ее нужно дополнить новой идеей, что сообщение может для одного человека быть неожиданнее, чем для другого. Объективно новое и неожиданное сообщение можно определить как сообщение, меняющее наше представление о мире и, следовательно, наше поведение.