Мозг, разум и поведение
Шрифт:
Рис. 11. Четыре жидкости тела. Против часовой стрелки, начинал с верхнего левого рисунка: слишком большое количество черной желчи удерживает меланхолика в постели; желтая желчь заставляет холерика-мужа бить свою жену, флегма делает возлюбленную несговорчивой; избыток крови заставляет кавалера играть на лютне для своей дамы.
Рис. 12. Увлечение анатомией заставляло Леонардо
Эти механистические открытия вызвали раскол в представлениях о теле и мышлении, который, по мнению некоторых ученых, с тех пор стал причиной многих проблем. Вопросы биологического характера — обо всем том, что можно «узнать» о людях и животных, — могли относиться только к структурам, общим для тех и других. Процессы восприятия и анализа образов, получаемых с помощью этих структур, принадлежали особому миру — «миру мышления», свойственному только человеческим существам. Хотя благодаря этому подходу было создано адекватное, математически верное описание трансформации зрительных и слуховых образов, без ответа остались более глубокие вопросы о том, как именно из полученных ощущений синтезируется осмысленное отображение мира.
За два столетия, предшествовавших промышленной революции, ученым удалось точно описать (но не объяснить) основные проявления электричества. По мере того как исследователи проникали в разные уголки земного шара, формировались более полные представления о поверхности земли. Принципы, выявленные при изучении электричества и географии, были в конце концов использованы и для объяснения работы мозга. Однако изменения происходили медленно. На смену теориям, связывавшим важные свойства нервной системы с потоками жидкостей, пришли теории «баллонистов»; согласно этим теориям, нервы представляют собой полые трубки, по которым проходят потоки газов, возбуждающих мышцы. Как можно было опровергнуть подобное представление? Ученые стали препарировать животных под водой. Поскольку газовых пузырьков, которые выходили бы из сокращающихся мышц, не наблюдалось, теория была признана ошибочной.
Что нового вынесла наука из этих малоприятных экспериментов? Напомним, что хотя электричество и было уже открыто, до его практического использования дело еще не дошло. Энергию для промышленных нужд в ту пору получали от ветряных мельниц, быстро текущих рек и водопадов, паровых машин. Что-то должно было вытекать из нервов и вызывать мышечные сокращения; поэтому газовую теорию заменила теория «жизненной жидкости». Содержимое полых нервов — рассуждали сторонники этой теории — втекает в мышцы, смешивается с их жидкостями и вызывает резкие сокращения. Гипотеза жидкостей была одним из первых научных «достижений», декларированных вновь образованным английским Королевским обществом.
Концепция жизненных жидкостей в конце концов уступила место иному представлению, которое Выдвинул физик Исаак Ньютон. Он утверждал, что передачу воздействия осуществляет вибрирующая «эфирная среда», постулированные свойства которой, как выяснилось позднее, присущи и «биологическому электричеству». Даже с помощью примитивных приборов XVIII и XIX столетий нетрудно было показать, что нервы и мышцы обладают электрической возбудимостью. Однако понимание того, что нервы и мышцы действительно работают, генерируя животное электричество, пришло далеко не сразу. Итальянский ученый Луиджи Гальвани разрешил эту проблему почти в самом конце XVIII века, а немецкий биолог Эмиль Дюбуа-Реймон вновь вернулся к ней в начале следующего столетия. Дюбуа-Реймон первым из ученых попытался объяснить все функции мозга на основе законов химии и физики. Ему и его сотрудникам впервые удалось измерить электрические потенциалы живых действующих нервов и мышц.
Рис. 13. Иоганн Кеплер изображал глаз скорее как
Рис. 14. Однажды разряд электрофорной машины в лаборатории Луиджи Гальвани случайно вызвал сокращение ноги только что отпрепарированной лягушки. Вывод о том, что электрические стимулы могут вызывать мышечные сокращения, положило начало поискам «животного» электричества.
В XIX веке были изобретены два метода, до сих пор сохранившие огромное значение для исследования нервной системы. Благодаря развитию технических средств ведения войны и росту числа ее жертв медики смогли определять точную локализацию повреждений мозга у солдат с несмертельными ранениями головы. Клинические наблюдения, позволяющие связать определенные неврологические и психические нарушения с повреждением определенных участков мозга, по-прежнему служат основным источником важнейшей информации (в гл. 6 обсуждаются возможности использования этого метода при изучении эмоций). Тот же подход применялся и в экспериментах на мозге животных для выяснения локализации таких функций, как движение конечностей или реакция на прикосновение.
Австрийский анатом Франц Иосиф Галль сделал еще один шаг в вопросе о локализации сенсорных (чувствительных) и моторных (двигательных) зон мозга. Он предположил (позаимствовав, быть может, идею из географии), что все умственные способности человека — от таких общих и очевидных, как речь и способность к целенаправленным движениям, до более специальных, как праворукость, остроумие или набожность, — могут быть определены по расположению шишек на черепе, лежащих над соответствующими участками мозга. Эта сегодня уже исчезнувшая наука, названная френологией, вскоре потеряла свою популярность. Аналогичная стратегия в изучении мозга животных, однако, оказалась более полезной. Как считали ее сторонники, функцию, за которую ответственна та или иная область мозга, можно выявить, если посмотреть, что произойдет при электрическом раздражении данной области. К концу XIX века эти два исследовательских подхода — изучение последствий повреждения мозга и метод электростимуляции — позволили специалистам приступить к оценке функциональной роли важнейших отделов мозга.
Рис. 15. После возникновения френологии в 1790 г. прощупывание бугров на голове стало повальным увлечением. Каждый хотел, чтобы ему рассказали о его голове — за исключением, может быть, лишь тех, у кого бугры окружали уши. Это свидетельствовало о драчливости, страсти к разрушению, скрытности, жадности и чревоугодии.
Рис. 16. Слои зрительной коры приматов. При этом очень малом увеличении ядра нервных клеток выглядят как темно-лиловые пятнышки. Шесть основных слоев различаются по плотности расположения нейронов.
Подобно тому как физики стали выяснять, что лежит под поверхностью земли и каковы детали структурных и химических свойств почвы, специалисты по мозгу начали сходные «геологические» изыскания, пытаясь узнать, что находится в глубине мозговых структур. Эксперименты с разрушением участков мозга и их стимуляцией показали, что наружные слои мозга очень существенны для высших форм сознания и сенсорных функций. По аналогии со слоями горных пород глубинные слои мозговой ткани объявлялись древними образованиями, наиболее примитивными из которых признаны внутренние структуры среднего мозга. При разрушении этих областей животные погибали.