Мозг, разум и поведение
Шрифт:
В настоящее время все чаще и чаще высказываются предположения о роли еще одного патологического механизма, который сейчас трудно, а может быть, и невозможно исключить из числа вероятных причин. Речь идет о нераспознанных латентных вирусных инфекциях. У нейронов, по-видимому, имеются поверхностные молекулы, очень сходные с рецепторами на поверхности лейкоцитов, циркулирующих в кровяном русле и вырабатывающих антитела. У лейкоцитов эти рецепторы распознают чужеродность вторгшегося инфекционного агента и мобилизуют другие лейкоциты для совместных действий по его уничтожению или по развитию иммунной реакции. У нейронов сходные рецепторы могли бы обеспечивать вирусам временное убежище на поверхности клетки, а может быть, и внутри нее, прежде чем они смогут быть уничтожены в результате иммунных процессов. Возможно, например,
Невидимая патология. Любая из этих предполагаемых причин могла бы привести к развитию болезни, происхождение которой неизвестно. Основная проблема заключается не в том, чтобы строить догадки по поводу того, каким образом нормальные физиологические процессы могли бы быть нарушены, а в том, чтобы выяснить, действительно ли они нарушены и как именно. Распознать изменения на молекулярном уровне — например, выявить аномальный вариант редкого медиатора или аномальные факторы роста в мозгу человека — с помощью современных методов пока невозможно.
Следует отметить также, что некоторые расстройства ЦНС, особенно те, которые могут появляться и исчезать, не обязательно должны быть связаны с аномалиями «жестких» механизмов — например, нейронных сетей или медиаторов. Вполне возможно, что происходят какие-то сбои в «гибких» механизмах — в программах последовательного анализа, синтеза и сравнения информации. Пока об этих процессах не известно почти ничего, кроме их конечного результата. Это предположение в настоящее время еще нельзя проверить, а непроверенные идеи, к сожалению, полезны лишь тогда, когда их можно сформулировать в виде гипотез, доступных для экспериментальной проверки.
От клеточной патологии к лечению
Что принесет нам будущее в смысле более четкой диагностики тех болезней центральной нервной системы, причины которых пока неизвестны? Сможем ли мы избирательно воздействовать на них и каковы могут быть меры профилактики? Наука о нервной системе вступает в период новых возможностей. В растущей шеренге вновь обнаруженных мозговых пептидов большинство еще плохо изучено, и пока нет точных данных об их количествах у здоровых людей, не говоря уже о больных с мозговыми расстройствами. В худшем случае окажется, что они вообще не имеют отношения к этим расстройствам. Может быть, знание количественных показателей поможет медикам дифференцировать болезни, объединяемые ныне по сходству симптомов, такие как шизофрения, аффективные расстройства, двигательные нарушения, слабоумие, эпилепсия и др. Если внутри этих категорий удастся распознать действие различных биологических факторов, можно будет, вероятно, выделить разные подтипы. Это в свою очередь привлечет внимание исследователей к разнообразию причин и способов лечения, различным мерам профилактики и различным гипотезам относительно процессов, лежащих в основе заболевания.
Несомненно, именно эти перспективы заставляют разочарованных неудачами клиницистов все-таки следить за достижениями в области изучения нейромедиаторов. Некоторые из наиболее мощных новых методов [таких, как позитронноэмиссионная трансаксиальная томография (ПЭТТ) или ядерный магнитный резонанс], выявляющих изменения метаболизма, кровотока, электрофизиологических или эндокринных функций в процессе мышления, могут помочь в диагностике функциональных нарушений и в определении их анатомической локализации. Однако мы еще не имеем никакого представления о том, каким образом события молекулярного уровня преобразуются в действия, которые мы приписываем работающему мозгу. Нужно выявить эти связи, если мы хотим узнать, действительно ли молекулярные события могут приводить к специфическим мозговым расстройствам и как это происходит.
Замещение поврежденных частей мозга. Если перейти к более отдаленной перспективе, можно предположить, что когда-нибудь неисправные или дегенерирующие участки мозга удастся заменять путем пересадки эмбрионального или периферического нейронного материала непосредственно в ту часть мозга, где имеется повреждение. Уже осуществлена трансплантация клеток мозгового вещества надпочечника, выделяющих катехоламины, в хвостатое ядро подопытных животных, а также людей, страдающих паркинсонизмом.
Следующим шагом в разработке заместительной терапии могла бы быть имплантация искусственно созданной вирусоподобной частицы, содержащей необходимый ген, выделенный из кожи или лейкоцитов здорового родителя, брата или сестры больного. Однако, прежде чем помышлять о таких пересадках, нужно еще очень многое выяснить, в том числе найти способ активации генов, которые в коже и кровяных клетках в норме неактивны.
Еще более проблематичными представляются исследования по созданию нейронных «мостов» в местах повреждения волокнистых трактов. В главе 2 мы вскользь упоминали о том, что нейроны центральной нервной системы, возможно, обладают некоторой способностью к регенерации. Имеющиеся данные как будто указывают на то, что поврежденные связи даже в головном мозгу могут восстанавливаться, если только этому не препятствуют факторы, тормозящие рост. (Возможно, что эти факторы в нормальных условиях обеспечивают стабильность большинства связей мозга; без них в условиях повышенной активности мозговых нейронов пластичность могла бы достичь такой степени, что под угрозой оказалась бы сама структура мозга.)
Способность нейронов головного мозга к регенерации явилась предметом экспериментальных исследований, проводившихся в Канаде и Швеции. Сначала в мозговой ткани животного производили повреждение. Затем из другого места брали отрезки периферических нервов, аксоны которых легко регенерируют, восстанавливая утраченные связи. Концы вырезанного участка нерва вводили в ткань мозга по обе стороны от места повреждения. По-видимому, в этих условиях многие виды центральных (мозговых) нейронов способны врастать сначала в отрезок периферического нерва, а затем — из другого его конца — обратно в мозг. Экспериментальные повреждения, наносимые животным, имитировали повреждения нервной ткани, возможные у людей при травме позвоночника или проникающем ранении головы. Результаты описанного метода дают некоторые основания надеяться, что со временем будут найдены и иные способы восстановления тканей мозга.
Замена компьютерами. Центральная нервная система — по крайней мере как мы сейчас понимаем ее возможности саморегулирования — не может использовать свою потенциальную способность к регенерации. В связи с этим многие ученые ищут пути устранения некоторых дефектов сенсорной функции с помощью компьютеризованных роботоподобных устройств, которыми можно было бы даже заменять неисправные компоненты. Для того чтобы найти способ обеспечить слепых людей хотя бы примитивным «тактильным зрением», в лабораториях используют принцип видеосканирования в сочетании с кожной стимуляцией. Некоторые формы нервной глухоты поддаются экспериментальному лечению с помощью звукочувствительных приборов, вживленных прямо в улитку. Применение таких приборов возможно потому, что наши сенсорные процессы состоят из отдельных этапов, которые могут быть воспроизведены искусственными устройствами.
Сходным образом знание всех этапов, с которыми связан запуск программ мышечной активности (ходьбы, например), позволит с помощью компьютеров преодолеть последствия паралича после травмы спинного мозга. Сначала компьютеры, получающие информацию о мышечной активности от расположенных на коже электродов, зарегистрируют последовательность мышечных сокращений при ходьбе или стоянии. Затем над мышцами парализованного больного поместят кожные стимулирующие электроды, с помощью которых будут «проигрываться» соответствующие программы. Закодированные стимулы прикажут мышцам действовать. И тогда, несмотря на повреждение, парализованный человек действительно сможет стоять и ходить — ведь компьютер будет непосредственно управлять мышцами.