Мозг: Ваша личная история
Шрифт:
Вот вам подсказка: мозг лишен доступа к окружающему миру. Запертый в темном, безмолвном пространстве черепа, мозг никогда напрямую не контактировал с окружающим миром и никогда не будет контактировать.
Существует единственный путь поступления внешней информации в мозг. Это органы чувств – глаза, уши, нос, рот и кожа, – которые выполняют роль переводчиков. Они принимают сигналы от разнообразных источников информации и преобразуют в общую валюту мозга – электрохимические сигналы.
Эти электрохимические сигналы проходят через густые сети нейронов, главных сигнальных клеток мозга. В мозгу человека насчитывается сто миллиардов нейронов, и каждую секунду каждый нейрон посылает десятки и сотни электрических импульсов сотням других нейронов.
Нейроны
Все наше восприятие – изображение, звук, запах – не является непосредственным, а представляет собой электрохимическое представление в темном театре.
Как же мозг превращает огромное количество электрохимических сигналов в полезное понимание окружающего мира? Он делает это путем сравнения сигналов, которые приходят от разных органов чувств, и выявления закономерностей, позволяющих делать верные догадки о том, что происходит «снаружи». На первый взгляд это дается ему без усилий. Но давайте присмотримся повнимательнее.
Начнем с главного органа чувств – зрения. Акт зрения кажется настолько естественным, что нам трудно понять, какой огромный механизм за ним стоит. Примерно третья часть человеческого мозга обрабатывает сигналы от органов зрения, превращая фотоны света в лицо матери, в любимого домашнего питомца или в диван, на котором мы собираемся вздремнуть. Чтобы снять покров тайны с того, что происходит в мозгу, обратимся к истории человека, который утратил зрение, а затем получил возможность его вернуть.
Я был слеп, а теперь вижу
Майк Мэй потерял зрение в возрасте трех с половиной лет. Химический ожог уничтожил роговицу, и в его глаза перестали попадать фотоны. Несмотря на слепоту, Майк стал успешным бизнесменом, а также великолепным лыжником, ориентируясь на склонах по звуковым сигналам.
Затем после сорока лет слепоты Майк узнал о новаторском методе лечения стволовыми клетками, способном исправить физические повреждения глаз. Он решился на операцию – его слепота была обусловлена разрушением роговицы, и решение выглядело очевидным.
Но случилось непредвиденное. Телевизионные камеры записали момент снятия повязки с глаз. Майк так описывает свои ощущения, когда врач снял бинты: «В мои глаза хлынул свет и поток образов. Внезапно прорвалась плотина зрительной информации. Это потрясающе».
Биология знает множество способов преобразования информации из окружающего мира в электрохимические сигналы. Вот несколько устройств, которые есть у вас: волосковые клетки внутреннего уха, несколько типов осязательных рецепторов кожи, вкусовые сосочки языка, молекулярные рецепторы обонятельной луковицы и фоторецепторы на задней стенке глаза.
Сигналы из внешнего мира преобразуются в электрохимические сигналы, которые передаются клетками мозга. Это первый этап восприятия мозгом информации из окружающей среды. Глаза преобразуют фотоны света в электрические сигналы. Механизм внутреннего уха превращает колебания плотности воздуха в электрические сигналы. Рецепторы на коже (а также внутри тела) преобразуют давление, растяжение, температуру и воздействие вредных веществ в электрические сигналы. В городе, куда съезжаются гости со всего мира, иностранную валюту, прежде чем проводить значимые транзакции, необходимо поменять на ту, которая имеет хождение
Одна из нерешенных проблем нейробиологии получила название «проблемы увязки»: как мозгу удается создать единую, связную картину мира, если зрительный сигнал обрабатывается в одном отделе, слуховой – в другом, осязательный – в третьем и т. д.? Мы до сих пор не знаем ответа на этот вопрос, но общая валюта нейронов, а также высокая степень их взаимосвязи могут указывать путь к решению проблемы.
Новая роговица Майка должным образом пропускала и фокусировала свет, но его мозг не понимал поступающую информацию. Под прицелом телевизионных камер Майк смотрел на своих детей и улыбался им, но внутренне был в полной растерянности, поскольку не мог сказать, как они выглядят или кто из них кто. «Я вообще не умел распознавать лица», – вспоминал он.
С точки зрения хирургии трансплантация закончилась полным успехом, однако, с точки зрения Майка, его ощущения нельзя было назвать зрением. Как он сам выразился, его «мозг находился в состоянии «Подумать только!».
С помощью врачей и родных он вышел из смотровой комнаты и пошел по коридору, бросая взгляды на ковер, на картины на стене и на двери. Все это не имело для него смысла. Когда же его посадили в машину и повезли домой, Майк смотрел на проносящиеся мимо дома, здания, людей и безуспешно пытался понять, что он видит. На шоссе он съежился от страха, думая, что машина врежется в большой прямоугольник впереди. Оказалось, что они просто проезжали под дорожным указателем. Майк не мог определять расстояние до объектов и их глубину. После операции кататься на лыжах ему стало даже труднее – из-за сложностей с восприятием он с трудом различал деревья, людей, тени и впадины. Все они казались ему просто темными предметами на белом снегу.
Пример Майка показывает, что наша зрительная система не похожа на видеокамеру. Чтобы видеть, недостаточно просто снять крышку с объектива. Необходимо нечто большее, чем здоровые глаза.
В случае с Майком сорок лет слепоты означали, что территория его зрительной системы (обычно мы называем ее зрительной зоной окры) была по большей части занята остальными чувствами, такими как слух и осязание. Это повлияло на способность мозга соединять все сигналы, необходимые для зрения. Как мы увидим ниже, зрение возникает в результате координации миллиардов нейронов, взаимодействие которых образует сложную симфонию.
В настоящее время, через тринадцать лет после операции, Майк с трудом читает слова на бумаге и различает выражения лиц людей. Когда ему требуется уточнить свое несовершенное зрительное восприятие, он использует для проверки информации другие органы чувств: дотрагивается до предмета, поднимает его, слушает. Это сравнение ощущений характерно для маленьких детей, чей мозг познает окружающий мир.
Для зрения нужны не только глаза
Когда младенец протягивает руку и дотрагивается до предмета перед собой, он не только исследует его текстуру и форму. Эти действия необходимы для того, чтобы научиться видеть. Идея, что движения нашего тела необходимы для зрения, может показаться странной, однако ее изящное доказательство было продемонстрировано в 1963 г.
Ричард Хелд и Алан Хейн, исследователи из Массачусетского технологического института, поместили двух котят в цилиндр с полосатыми стенками. Оба котенка получали зрительную информацию от движения внутри цилиндра. Но между их восприятием имелось одно важное отличие: первый котенок гулял свободно, а второй находился в корзинке, прикрепленной к центральной оси цилиндра. В результате оба котенка видели одно и то же – полосы, перемещавшиеся для обоих животных с одинаковой скоростью. Если бы зрение определялось только достигающими глаз фотонами, зрительные системы котят развивались бы одинаково. Но результат удивил исследователей: нормальное зрение развилось только у того котенка, который мог свободно двигаться. Тот, что сидел в корзинке, так и не научился правильно видеть; его зрительная система должным образом не развилась.