Музыкальный центр на компьютере
Шрифт:
Домашний музыкальный центр
Цифровой звук
Итак, что же такое цифровой звук? И почему он цифровой? Чем отличается от обычного, аналогового звука?
Вы наверняка слышали множество мнений, от восторженных отзывов до пренебрежительных. Одни знатоки утверждают, что лучшее качество и достоверность звука на носителях CD-Audio, а теперь уже и DVD-Audio, другие – что самый естественный и теплый звук у виниловой пластинки, а есть и такие, которые безапелляционно заявляют, что время аудиодисков прошло, будущее за музыкой в сжатом формате, который наиболее удобен и по качеству не уступает обычным аудиодискам. Кто же прав? В высказываниях каждого приверженца музыки есть доля истины, а вот с особенностями мы сейчас разберемся.
Как
Начнем с поисков различий между аналоговым и цифровым звуком. Что есть звук? Правильно, колебания звуковых волн в пространстве. Для обработки и усиления звуковые колебания сначала превращаются в электрические, обрабатываются, а затем преобразуются обратно в звуковые. Как выглядит обычный звуковой сигнал, показано на рисунке выше. В английской литературе осциллограмма звукового сигнала часто называется waveform. На русский язык иногда переводят дословно – волновая форма, что не совсем правильно. Будем применять непосредственный универсальный термин – сигнал. Ваш голос, записанный с микрофона, песня со старой грампластинки, дорожка компакт-диска, синтезированная композиция – все это для компьютера сигналы, с которыми вы будете работать.
На рисунке показана только часть композиции. Можно увеличивать масштаб до бесконечности, форма сигнала остается, меняется только масштаб.
Оцифровка звука
Чтобы звук перевести в цифровую форму, его надо оцифровать. Оцифровывают аналоговый сигнал путем измерения мгновенных уровней сигнала и последовательной записи этих значений в файл. На рисунке измеряемые значения на исходной кривой отмечены точками.
Между измерениями существуют интервалы, длительность которых определяется частотой дискретизации. Чем больше частота дискретизации, тем меньше интервал, тем точнее повторится форма исходного сигнала. То есть частота дискретизации определяет допустимый частотный диапазон входного сигнала. По теореме Котельникова – Шеннона она должна быть в два раза выше максимальной частоты измеряемого сигнала. Вот откуда взялась частота дискретизации 44 кГц. Это удвоенная частота слышимого человеком звука, теоретически. Она таковой и является – на компакт-дисках. Новые форматы хранения оцифрованного звука, DVD-Audio и Super AudioCD, подразумевают еще более высокую частоту дискретизации (до 192 кГц).
Посмотрим еще раз на рисунок. Есть что-то неправильное. Ведь сигнал от одного замера до другого может измениться несколько раз, а это значит, что частота дискретизации выбрана гораздо ниже необходимой и в результате сигнал оцифруется с большими искажениями. Сигнал с необходимой частотой дискретизации будет выглядеть, как показано на следующем рисунке. Как видим, в этом случае разницей в замерах действительно можно пренебречь.
Другой важный параметр – разрядность преобразования. Он определяет точность замера мгновенной величины сигнала. Сигнал измеряется с шагом, соответствующим одному интервалу из максимального количества интервалов, на которые условно делится сигнал при измерении. Следовательно, точность преобразования составляет ±1 интервал. Обыкновенно применяют 8-, 16– и 20-битные преобразования. (Для AudioCD разрядность звука соответствует 16 битам, для более совершенных носителей – 20 битам.) Разрядность преобразования определяется звуковой картой, а именно АЦП, с помощью которого оцифровывают сигнал. Например, при преобразовании входного сигнала с максимальным значением 100 процентов 8-битным преобразователем погрешность сигнала будет составлять 100/28 = ±0,4 процента, а для 16-битного преобразования 100/216 = ±0,0015 процента. Чтобы разъяснить эти сухие цифры, рассмотрим процесс «оцифровки» на рисунке. Для наглядности будем считать, что АЦП звуковой карты у нас трехбитовый (ужас какой!). Пунктирной линией показан результат преобразования входного сигнала. Соответственно, погрешность в этом случае громадная – 100/23 = ±12,5 процентов. Итак, мы видим, что чем выше разрядность преобразования,
Естественно, как при увеличении частоты дискретизации, так и при увеличении разрядности преобразования геометрически увеличивается объем конечного файла. Стандартными для современных звуковых карт являются: значение частоты дискретизации 44 кГц и разрядность преобразования 16 бит. При этих параметрах объем файла составляет около 10 Мб на 1 минуту звука. Это много, даже при современных объемах винчестеров, не говоря о переносных устройствах.
Каким бывает цифровой звук?
На самом деле, видов «цифрового звука» – точнее, видов его представления в компьютере – может быть несколько.
Уже знакомый нам «оцифрованный звук» – аналог фотографии, точная цифровая копия введенных извне звуков. Это может быть сделанная с микрофона запись вашего голоса, копия звуковых дорожек с компакт-диска и других источников. Как и фотография, такой звук занимает много места… впрочем, аппетиты фотографии по сравнению со звуком просто ничтожны! Одна минута цифрового звука, записанного с максимальным качеством, занимает около 10 мегабайт. Правда, существуют специальные методы сжатия, уменьшающие объем компьютерного звука в десятки раз! Но об этом позже.
Помимо «цифрового», существует еще и «синтезированный» звук – точнее, музыка в формате MIDI. Ну, с синтезаторами-то наверняка вы знакомы! Вкратце суть MIDI-технологии можно изложить так – компьютер не просто проигрывает нужную вам мелодию, а синтезирует ее с помощью звуковой карты. MIDI-мелодии – это всего лишь системы команд, управляющие звуковой картой, коды нот, которые она должна «изобразить» (с указанием инструментов, длительности и некоторых других параметров оной ноты). Эта технология идеальна для компьютерных композиторов, поскольку позволяет с легкостью изменять любые параметры созданной на компьютере мелодии – заменять инструменты, добавлять или удалять их, изменять темп и даже стиль композиции. И файлы с MIDI-музыкой – крохотные, всего в несколько десятков килобайт. Но и недостатки у MIDI есть – голос в MIDI-файле не запишешь, да и музыка хорошо звучит лишь на очень качественной звуковой карте. Перенесешь созданный тобой файл на компьютер соседа, оборудованный 10-долларовой карточкой, – и будешь долго думать, куда это испарилась вся прелесть и красота мелодии. Правда, MIDI можно сравнительно легко перевести в формат цифрового звука – обратное преобразование, к сожалению, на сегодняшнем уровне развития компьютерной техники невозможно.
Наконец, существует и третий вид звука, с которым вы можете работать в домашних условиях, – «трекерная» или «сэмплерная» технология, своего рода плод любви цифрового и синтезированного звука. При работе с программами этого типа вы будете «конструировать» музыкальную композицию из небольших периодически повторяющихся «кусочков» цифрового или синтезированного звука – петель или сэмплов. Именно по такому принципу создаются композиции в популярном сегодня стиле «хаус», «транс», «техно»… Короче – вся простая (чтобы не сказать грубее – примитивная) танцевальная, ритмическая музыка. Такой тип музыки – нечто среднее между цифровой и синтезированной – называется «трекерным» и имеет пусть ограниченную, но верную аудиторию поклонников.
Что мы будем делать со звуком?
А вот теперь, когда с теорией покончено, самое время перейти к практике. Итак, зачем именно вы купили эту книгу и что именно вы собираетесь делать со звуком?
Если ваш интерес лежит прежде всего в обработке звука (то есть в записи собственных композиций или очистке уже существующих), то в вашем распоряжении – программы-редакторы типа Adobe Audition.
Если вы – компьютерный музыкант и планируете не обрабатывать, а создавать на компьютере музыку с нуля, то вам придется освоить работу с многодорожечными редакторами типа Sony Vegas, а также MIDI-секвенсорами и музыкальными конструкторами (типа Fruity Loops или eJay).
Как я строил магическую империю 3
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
рейтинг книги
Ритуал для призыва профессора
Любовные романы:
любовно-фантастические романы
рейтинг книги
Невеста снежного демона
Зимний бал в академии
Фантастика:
фэнтези
рейтинг книги
Прорвемся, опера! Книга 3
3. Опер
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Леди Малиновой пустоши
Любовные романы:
любовно-фантастические романы
рейтинг книги
Мымра!
1. Мымрики
Любовные романы:
современные любовные романы
рейтинг книги
Матабар
1. Матабар
Фантастика:
фэнтези
рейтинг книги
Офицер Красной Армии
2. Командир Красной Армии
Фантастика:
попаданцы
рейтинг книги
