Мыслящая Вселенная
Шрифт:
Но это не все. Имеется еще очень важное обстоятельство, ограничивающее чувствительность радиоприемника. Это собственные его шумы. Причиной их являются процессы в различных радиодеталях. Проблема устранения этих шумов очень непростая. Решение ее очень важно не только для радиоастрономии, но и для многих других областей научных исследований, а также практических задач, где требуется принимать слабые радиосигналы на фоне превосходящего их шума. К настоящему времени уже сделано много для решения данной проблемы. Специалисты научились выделять очень слабые полезные радиосигналы из-под превышающих их шумов. Но для технического воплощения найденных решений требуется значительное усложнение радиоприемной аппаратуры.
Возможности радиотелескопов можно значительно расширить, если их использовать не поодиночке, а парами. Их можно включить так, что приходящие из космоса радиоволны будут суммироваться. Более конкретно
Две волны одинаковой длины можно так расположить друг относительно друга, что при сложении они полностью погасят друг друга, то есть дадут ноль. Для этого они должны быть в противо-фазе друг к другу. Если же они будут в фазе (то есть гребень одной волны точно совпадет с гребнем другой), то они сложатся и результирующая волна будет иметь интенсивность (амплитуду), равную сумме интенсивностей обеих волн. Если амплитуды изначальных волн были одинаковы, то произойдет удвоение амплитуды первоначальной волны. Источник излучения, который посылает волны, находящиеся в фазе друг с другом, называют когерентным. Мощность излучения равна квадрату интенсивности. Поэтому при когерентном сложении, когда интенсивность волны удваивается, мощность излучения увеличивается в четыре раза (она прямо пропорциональна квадрату интенсивности).
Идея использования радиотелескопов парами состоит в том, что при определенном расположении телескопов принятые каждым из них волны будут складываться когерентно. При этом амплитуда (интенсивность) увеличится вдвое, а мощность — в четыре раза. Для того чтобы сложение волн происходило когерентно, надо выбрать длину электрического кабеля от каждого из радиотелескопов до радиоприемника так, чтобы сигналы от каждого радиотелескопа попадали в приемник одновременно. Описанное сложение волн называется интерференцией. Поэтому включенная таким образом в единую систему пара радиотелескопов называется радиоинтерферометром.
Радиотелескопы располагаются на некотором расстоянии друг от друга, которое называется базой. Радиоволны падают на их зеркала из космоса под определенным углом. Если это направление изменится, то при той же базе условие одновременного прихода сигналов в приемник нарушается. Понадобится отрегулировать длину кабеля (волновода). В результате вращения Земли находящиеся на ней радиотелескопы непрерывно меняют направление своих лучей относительно космических объектов, а значит, меняется и направление радиоволн, приходящих к телескопу от данного источника. Эти изменения не компенсируют непрерывным изменением длины волновода. Их просто учитывают при обработке данных измерений, поскольку они будут приводить к изменению интенсивности. Всякое отклонение угла падения oт оптимального (при котором происходит когерентное сложение радиоволн) приведет к уменьшению интенсивности суммарной волны.
Возможности радиоинтерферометров значительно больше, чем отдельных радиотелескопов. Так, если база радиоинтерферометра составляет 8000 километров, то он позволяет проводить измерения радиоизлучения с разрешением в 0,0001 угловой секунды. Один радиотелескоп этого интерферометра находится в Крыму, а другой — в Хайситекской обсерватории (США). Под углом в 0,0001 секунды дуги виден с Земли след космонавта на поверхности Луны! Максимальное угловое разрешение оптических телескопов составляет полсекунды дуги. Вот какими зоркими стали современные радиоинтерферометры. Чем больше база радиоинтерферометра, тем больше его разрешение. Радиотелескопы и радио-интерферометры, установленные на поверхности Земли, работают с серьезными ограничениями. В первую очередь, их работе мешает земная атмосфера. Так как она неоднородна, то и отдельные радиолучи проходят через среду с разными характеристиками, и поэтому их фазы колебаний и амплитуды будут отличаться. Говоря научным языком, можно сказать, что они перестают быть строго когерентными. Это изменяет получаемое изображение. Кроме того, атмосфера и ионосфера поглощают радиоволны определенной длины, то есть становятся для этих волн непрозрачными. Имеются и чисто земные ограничения. Это весовые и ветровые ограничения, и индустриальные радиопомехи, и, наконец, огромная «космическая» стоимость антенн таких размеров, которые надо бы иметь. Поэтому их создание нереально.
Многие из этих ограничений или снимаются, или ослабляются, если радиотелескопы поднять над земной атмосферой, вынести в космос. Здесь металлические конструкции могут быть более ажурными, легкими, поскольку ветровых нагрузок нет, а притяжение меньше. Но главное даже не в этом, а в том, что между объектом и прибором отсутствует неоднородная атмосфера и, кроме того, база интерферометра не ограничивается размерами Земли. Возможности интерферометров значительно возросли после того, как в 1970 году французский астроном А. Лабейри предложил эффективный
Не надо думать, что с выносом телескопов и интерферометров за пределы земной атмосферы полностью отпадает необходимость бороться с последствиями того, что среда, в которой распространяются радиоволны или свет, является неоднородной. Поэтому метод спекл-интерферометрии применяется и при проведении измерений на космических интерферометрах.
Антенные поля в космосе могут создаваться с помощью автоматически развертывающихся конструкций, как это уже делается. При этом можно создать антенные поля, площадь которых во много раз превышает площадь земных антенн. Доставлять на орбиту эти конструкции будут транспортные космические системы, которые способны будут доставлять в космос строительный материал для энергетических установок, технологических комплексов и космических колоний.
Показано, что космический радиотелескоп можно установить на геостационарной орбите. Его размер может достигать 10–20 километров. Но важен не только размер антенны, но и длина волны, на которой работает интерферометр. Важно, в конечном счете, отношение минимальной рабочей длины волны к диаметру антенны. С выводом интерферометров в космос чувствительность их может быть увеличена более чем в сто тысяч раз. Надо иметь в виду, что чувствительность увеличится примерно в 10 раз только за счет уменьшения промышленных помех.
Разрешающая способность при этом также увеличится примерно во столько же раз. Она возрастает за счет увеличения базы интерферометра. Кстати, тут возможны различные варианты. Можно один телескоп оставить на Земле, а другой разместить на спутнике. При этом получится наземно-космический интерферометр. Высота орбиты спутника может быть относительно небольшой (400–600 километров). В такой комбинации земного и космического радиотелескопов достигается новый специфический эффект, обусловленный тем, что оба интерферометра обращаются вокруг общего центра несинхронно, а относительная их скорость большая. Это позволяет получать более богатую информацию.
Можно несколько видоизменить приведенный вариант — использовать спутник с апогеем до 1 миллиона километров. При этом угловое разрешение увеличится в сто раз. И наконец, можно космический радиотелескоп вынести на удаление около 100 миллионов километров от Земли. Можно считать, что для такого радиотелескопа антенна уже отработана в процессе подготовки эксперимента по исследованию поверхности Венеры. Расстояние между зеркалами (база) интерферометра, видимо, достаточное. Но точность инструмента ограничивается влиянием неоднородностей космической среды. Это может затруднить обнаружение астроин-женерных сооружений внеземных цивилизаций в космосе.
Один на миллион. Трилогия
Один на миллион
Фантастика:
боевая фантастика
рейтинг книги
Record of Long yu Feng saga(DxD)
Фантастика:
фэнтези
рейтинг книги
Игра с огнем
2. Мой идеальный смерч
Любовные романы:
современные любовные романы
рейтинг книги
Бастард Императора
1. Бастард Императора
Фантастика:
фэнтези
аниме
рейтинг книги
Хозяин Теней
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Вор (Журналист-2)
4. Бандитский Петербург
Детективы:
боевики
рейтинг книги
Прорвемся, опера! Книга 2
2. Опер
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Вторая жизнь майора. Цикл
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
рейтинг книги
Фею не драконить!
2. Феями не рождаются
Фантастика:
юмористическая фантастика
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
