Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Рис. 105. Обильные излияния вулканических лав приводили к затоплениям обширных районов на расстояниях до 1500 км от вулкана. Участок поверхности выше и левее кратера Пикеринг (справа, диаметр 120 км) и само дно кратера подверглись затоплению при извержениях вулкана Арсия. Снимок NАSА

Окраска поверхности Марса создается присутствием гидратов окислов железа. Они образуют слой красной пудры на зернах силикатного песка. Этот песок является основной составляющей поверхности планеты. Примерно десятую часть составляет примесь гидратов железа. Возможно, имеются и примеси других пород. Во всяком случае большая часть поверхности Марса представляет собой мелкий красный песок, из которого выдвигаются бесчисленные камни. Но красный песок покрывает частично даже камни. Песчинки очень мелки, всего 1–5 мкм (микрометров). Широко известны пылевые

бури на Марсе. Есть ветер, и есть пыль. В результате получаются пылевые бури. Полагают, что когда буря затихает, осевшие песчинки (практически пылинки) слипаются в комочки. Размер их достигает одного миллиметра. Когда сухие пылинки (песчинки) трутся друг о друга, они электризуются. Имея электрический заряд, они очень легко слипаются. Но при этом действуют не только электрические силы. На частицах может намерзать водяной иней или иней углекислоты. Естественно, что при этом они увеличиваются. Ясно одно: поверхность Марса составляют пыль, песок, камни и в некоторых местах скалы. Это не домыслы, а документированные данные, полученные с помощью космических аппаратов.

Мы уже упоминали о каньонах. Добавим еще несколько слов. Самым большим каньоном на Марсе является долина Маринера. Его длина 4500 километров, а глубина 5–7 километров. На дне каньона атмосферное давление вдвое больше, чем на нулевом уровне. Оно составляет 12 мбар. По сторонам каньона имеется развитая система «притоков». Это своего рода овраги. Западная оконечность этого огромного района переходит в лабиринт Ночи. Это разветвленная система трещин в поверхности планеты. Каждая трещина достигает 30 километров в ширину. Система трещин охватывает обширный район Марса. Протяженность района достигает 100 километров. Полагают, что система трещин образовалась в результате действия подпочвенных явлений. Не исключают и процессы, связанные с таянием вечной мерзлоты.

Особого внимания заслуживает туман, который покрывает долину Маринера по утрам, а иногда и к вечеру. Порой туман настолько плотный, что космические аппараты не могут «просматривать» марсианскую поверхность.

Главным является вопрос образования каньона. Конечно, это не канал, и выброшенного грунта нигде нет. Ясно одно, что если тектоника Земли состоит из отдельных плит (это мы рассмотрели в книге «Озонные дыры»), то вся кора Марса всегда двигалась как единая плита. Самый главный каньон Марса начал формироваться примерно около 3 миллиардов лет назад.

Каньон в долине Маринера, видимо, образовался так. Голова каньона (лабиринт Ночи) является результатом разрушения поверхности, которое продолжается. На склоне каньона видны слои пыли, лавы и вулканического пепла. Общая толщина слоя достигает 2 километров. Каньон — это своего рода разрез, причем на большую глубину. Из таких разрезов можно получить ценную информацию о строении и составе грунта на разных глубинах. Космические аппараты фотографировали оползни, которые проходят через метеоритные кратеры, пересекают друг друга и растекаются по дну. Получены снимки, на которых на склонах, на языках оползня видны несколько метеоритных кратеров диаметром в несколько сотен метров. Возраст оползней солидный. Полосы на языках оползней дают представление о направлении движения грунта. Полосы же на дне каньона дают информацию о направлении ветров. Значительные области на поверхности Марса покрыты грунтом, который в древности переработан многократными ударами. Специалисты этот грунт называют реголитом.

Воды на Марсе очень мало (даже в виде водяного пара). Тем не менее у специалистов есть основание предположить, что каньоны образовались потоками воды. Удивляться не надо. Космические аппараты сфотографировали на Марсе русла высохших рек. Два из этих снимков показаны на рисунке 106. В долине реки Нер-гал (верхняя часть рисунка) реки как таковой нет, есть только высохшее русло. Протяженность этого русла 400 километров. Мало того, рельеф местности позволяет заключить, что река Нергал впадала в огромное водохранилище. Внизу на рисунке 106 видно русло реки Маадим, протяженность которого достигает 700 километров. Обмеление этих и других рек происходило постепенно. Видимо, на планете менялись условия. Но куда исчезла вода и, вообще, откуда она бралась в более ранний период? Анализ всех данных, полученных с помощью космических аппаратов, позволяет нарисовать следующую картину.

Еще до того, как космические аппараты высадились на Марсе, большинство специалистов сходилось на том, что так называемые

Рис. 106. Вверху: сухое русло древней марсианской реки Нергал с притоками (долина глубоко прорезает лавовую равнину). Полная ее длина около 400 км. Внизу: долина Маадим длиной около 700 км. В средней ее части видна тонкая, более поздняя долина. Маадим находится в южном полушарии и вытянута вдоль меридиана 187° от 29 до 14° ю. ш., где соединяется с большим кратером. Снимок NАSА

шапки Марса представляют собой не что иное, как лед, то есть замершую воду. Прямые измерения на Марсе показали, что температура зимней полярной шапки практически совпадает с температурой конденсации углекислого газа при марсианских давлениях: 148 К или — 125 °C. Это наводит на мысль, что полярные шапки Марса могут

состоять из замерзшего углекислого газа. Это значит, что, когда наступают зимние холода, в районе полярных шапок атмосферный газ конденсируется и выпадает в виде снега из углекислого газа. Толщина такого снежного покрова не больше 10 сантиметров. Но площадь шапок большая — от полюса до широты 55° и ниже. Когда наступает весна, этот снег тает и остается не тронутым теплом только в небольшой центральной области. Эта область невелика, всего 500–700 километров. Она покрыта снегом не из углекислого газа, а из воды. То есть это настоящий снег. Дело в том, что летом в этой области температура такая, при которой снег из углекислого газа обязан растаять. Правда, часть этого углекислого снега все же сохраняется и летом. Поэтому реальная картина такая: в полярных шапках имеются многочисленные слои обычного льда из воды вперемежку с напластованиями пыли и льда из СО2. Полная толщина этого хранилища достигает нескольких километров. Мы уже говорили о том, что южное и северное полушария (а значит, и полярные шапки) на Марсе находятся в неравноправных условиях. Поэтому не должно удивлять, что северная полярная шапка Марса (размер ее больше, чем размер южной шапки) состоит главным образом из водяного льда, тогда как в южной шапке преобладает лед из углекислого газа. Здесь основным регулятором выступает температура. В южном и северном полушарии сезонные температуры отличаются. Длительность сезонов в разных полушариях Марса также неодинакова.

Так все-таки что собой представляли реки на Марсе, и откуда бралась вода? Первичная атмосфера на Марсе была не той, что сейчас. Собственно, все планеты (в том числе и Земля) проходили через это. Когда-то на Марсе атмосферное давление было намного больше — 100, а может быть, и все 3000мбар. Такое давление означает тепло, при котором тает любой лед, как водяной, так и лед из углекислого газа. Но в результате такого таяния должно еще больше повышаться атмосферное давление. Атмосфера из углекислого газа создает парниковый эффект, тем более если в атмосферном газе содержится водяной пар. В результате температура у поверхности Марса должна была повыситься ни больше, ни меньше как на все 100 градусов. В итоге мы получаем 30–50 °C. Это комфортные земные условия. Очень важную роль в этот период в атмосфере Марса, в его температуре играл водяной пар. А в то время водяного пара было много. Откуда он мог взяться? Прежде всего из той воды, которая выделялась при извержении вулканов. Она заполняла углубления на поверхности планеты и образовывала водоемы. Кроме того, при столь высокой температуре обязаны были таять подпочвенные мерзлоты. Это происходило из-за разогрева коры планеты. В это благоприятное, комфортное время на Марсе и текли реки. И какие реки! Многие реки брали свое начало «под землей». Иногда реки брали свое начало в небольших кратерах, но многие из них при этом уходили «под землю». Речь идет о явлениях, похожих на карст. В данном случае это результат растворения подземных месторождений солей или карбонатов. Специалисты не сомневаются, что на Марсе таяла вечная мерзлота. Мало того, специалисты считают, что и сейчас значительная часть воды на Марсе находится в подпочвенном состоянии вечной мерзлоты. Где скапливалась вода? В первую очередь, в естественных котлованах. Ими могли служить, прежде всего, кратеры. Они и заполнялись водой. Конечно, вода заполняла все углубления, создавая озера.

Но! Атмосфера состоит главным образом из углекислого газа. А она зиждется на водном основании. Углекислый газ хорошо растворяется в воде. В результате в тех условиях на Марсе атмосферное давление должно было падать, поскольку часть атмосферного газа (а большая часть его — углекислый газ) растворялась в воде и покидала атмосферу. Далее растворенный в воде атмосферный углекислый газ уносился водой и затем, скорее всего, выпадал в составе карбонатов в осадки. Так что воды на Марсе было достаточно. Но он ее потерял. Потерял потому, что у него не хватило сил удержать ее. Внизу в атмосфере находится вода (водяной пар). Выше молекулы воды (как и в атмосфере Земли) разрываются (диссоциируют) на отдельные атомы. А дальше водород убегает в космическое пространство. На Земле притяжение больше, и то она теряет 100 тонн водорода каждые сутки. На Марсе сила тяготения меньше. И поэтому потери его были больше. Вода ускользала с планеты очень быстро. Вода ушла. Закончились тепличные условия, которые обеспечивала вода. А далее все просто и понятно: температура понизилась, подпочвенная вода перешла в фазу льда (вечная мерзлота). Часть воды оказалась связанной в глинах. В этих условиях появились снежные полярные шапки. Они стали ловушками для паров воды, которые еще остались. Марс потерял воду, которая могла покрыть всю его поверхность слоем в 100 метров, а может, и больше.

Космический аппарат выполнял измерения в северном полушарии в период «макушки лета». Он зарегистрировал, что в керне полярной шапки в это время образуются протяженные промоины, которые обнаруживают многочисленные слои льда. Эти слои перемежаются тонкими слоями более темного материала. Температура шапки в это время составляет –73 °C (то есть 200 К). Но она низка для того, чтобы появилась жидкая вода и могли образоваться ручьи. Лед испаряется, происходит сублимация льда. Он сразу переходит в пар. Поэтому и наблюдается повышенная концентрация водяного пара в атмосфере Марса вблизи летней полярной шапки. Лед покрыт слоем пыли, поэтому процесс испарения идет медленно.

Поделиться:
Популярные книги

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Маршал Сталина. Красный блицкриг «попаданца»

Ланцов Михаил Алексеевич
2. Маршал Советского Союза
Фантастика:
альтернативная история
8.46
рейтинг книги
Маршал Сталина. Красный блицкриг «попаданца»

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Энциклопедия лекарственных растений. Том 1.

Лавренова Галина Владимировна
Научно-образовательная:
медицина
7.50
рейтинг книги
Энциклопедия лекарственных растений. Том 1.

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Адептка в мужской Академии

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.44
рейтинг книги
Адептка в мужской Академии

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна