Наблюдения и озарения или Как физики выявляют законы природы
Шрифт:
В совершенном кристалле, как принято говорить, связи между атомами «насыщены» или «заполнены». Электроны трудно оторвать, они с трудом перемещаются, что приводит к очень высокому электрическому сопротивлению — это изолятор. Однако вкрапления чужеродных атомов, которые не вполне подходят к данной структуре, приводят либо к появлению избыточных электронов, способных участвовать в электрическом токе, либо к дефициту электронов, известному как «дырки», — электропроводность возрастает.
Причина роста электропроводности заключается в следующем. Если в чистый кристалл ввести примеси в виде атомов, нарушающих регулярную кристаллическую структуру и могущих отдать на один электрон больше, то будет создан кристалл n– типа (от negative — отрицательный)
Вначале Шокли намеревался моделировать основной принцип устройства электронной лампы: приложить электрическое поле поперек полупроводника и с его помощью управлять прохождением электрического тока вдоль образца. Но хотя расчеты показывали, что такое поле должно приводить к усилению тока, получить практические результаты не удавалось. (Заметим, что такое устройство удалось осуществить, пока в лабораторной модели, только в 2010 г. с развитием нанотехнологии.)
Тогда Бардин предположил, что электроны оказываются запертыми в поверхностном слое, и этот слой не пропускает поле внутрь полупроводника, экранирует его. Пришлось взяться за исследование поверхностных эффектов — это и помогло понять сложное поведение полупроводниковых устройств.
В 1947 г. Бардин и Браттейн достигли первого успеха, построив полупроводниковый усилитель, или транзистор (от английских слов transfer — перенос, плюс resistor, от лат. resisto — сопротивляюсь). Это был блок германия (полупроводника n– типа) с электродом на широкой грани (база), а на противоположной грани были два близко расположенных золотых точечных контакта («кошачьи усы»). К одному контакту (эмиттеру) прикладывалось небольшое положительное напряжение относительно базы и большое отрицательное напряжение относительно второго контакта (коллектора). Сигнал, подаваемый на эмиттер вместе с постоянным смещением, передавался со значительным усилением в цепь коллектора. В основе действия транзистора лежит внедрение дырок в германий через контакт-эмиттер и их движения к контакт-коллектору, где дырки усиливают коллекторный ток.
Шокли предложил заменить неустойчивые точечные контакты на выпрямляющие переходы между областями р– и n– типа в том же кристалле (1950). Такой плоскостный транзистор состоял из тонкой р– области, заключенной между двумя n– областями (все они с независимыми внешними контактами), работал он надежнее предшествующей модели и был проще в изготовлении. А дальнейшее усовершенствование методов выращивания, очистки и обработки кристаллов кремния позволило осуществить давнюю идею Шокли о создании транзистора на основе полевых эффектов.
Ныне этот тип транзисторов, которые легко сделать миниатюрными, наиболее широко используется в электронных устройствах. Оказалось, что их не нужно изготовлять и выпускать по-отдельности — можно производить непосредственно на кристаллах вместе с остальными деталями электронных схем, это и есть современные чипы.
Отметим, что Шокли проявил большую активность и после своих эпохальных успехов: ему принадлежат более 90 патентов в различных областях электроники (в том числе, в создании элементов магнитной памяти). Браттейн продолжал исследовать и улучшать параметры полевых транзисторов, которые очень чувствительны к поверхностным дефектам, и разрабатывать солнечные батареи. О работах Бардина по сверхпроводимости,
Заметим, что если переход от германия к кремнию позволил резко улучшить качество полупроводниковых приборов, то новый скачок может быть достигнут с переходом от кремния к углероду (взгляните на таблицу Менделеева — они в одном столбце!), но для этого нужно научиться получать дешевые промышленные алмазы, точнее — алмазные (не ювелирные!) пленки. Можно также усложнять вид полупроводниковых устройств — переходить к гетероструктурам, микроминиатюризовать их. Так что вся эта область остается предметом активных разработок.
Глава 3
Мазеры и лазеры
Первые квантовые генераторы построили, одновременно и независимо, как мы уже говорили, Чарлз X. Таунс (р. 1915) в США и Александр Михайлович Прохоров (1916–2002) и Николай Геннадиевич Басов (1922–2000) в СССР. По-видимому, Прохоров и Басов сделали такое устройство чуть раньше, но из-за проволочек в редакции журнала их статья вышла несколько позже статьи Таунса (между собой они вопросы приоритета никогда не дискутировали). Поэтому мы постараемся параллельно рассмотреть пути, которые привели их к открытию.
Таунс в 1939–1947 гг. проводил исследования в знаменитых Лабораториях телефонной компании «Белл», где разрабатывал, главным образом, авиационный радар (радиолокатор) для прицельного бомбометания. Таким образом, он шел в физику от радиофизики, точнее, от радиотехники микроволн — электромагнитных волн сантиметрового и миллиметрового диапазонов [47] .
Любопытно отметить, что Н.Г. Басов — по первому образованию ветеринар, так и прошел фронт в этой специальности, но после известий о ядерных взрывах решил стать физиком.
47
Примечательна разносторонность интересов Таунса: в течение этого периода он также учился музыке и вокалу в вечерних классах музыкальной школы; он владеет многими языками, включая русский.
В то время в радиолокационных установках излучение генерировалось электронами, которые осциллировали (колебались) внутри металлических резонаторов и создавали стоячие волны между параллельными стенками резонатора. Поэтому длины волн излучения были кратны размерам резонатора и самая короткая достижимая длина волны была около 1 мм (частота —300000 МГц).
Еще занимаясь радарами, Таунс понял, что для них нельзя использовать все длины волн: молекулы воды в воздухе, например, интенсивно поглощают миллиметровые волны. Но отсюда следовало, что поглощение микроволн может служить основой для новой техники — микроволновой спектроскопии, позволяющей определять строение молекул.
А затем Таунсу пришла в голову идея: микроволны такого диапазона соответствуют разности энергий между некоторыми молекулярными уровнями. Значит, можно попробовать кардинально перестроить всю радарную технику — вместо того, чтобы возбуждать электроны в резонаторе, заставить молекулы прямо излучать нужные кванты.
Но ведь каждая молекула излучает, вообще говоря, сама по себе, а нужно получить мощный импульс. Как же заставить их излучать одновременно?
Давайте вспомним, как происходит процесс излучения. Электрон в атоме или молекуле может поглотить фотон, энергия которого равна разности между двумя уровнями, и подняться, в результате, на более высокий энергетический уровень — атом или молекула возбуждаются, т. е. приобретают избыточную энергию (правильнее, конечно, сказать, что в них на верхний уровень поднимается электрон). Через какое-то время после возбуждения (время высвечивания) они переходят на более низкий энергетический уровень спонтанным, случайным образом, выделяя энергию, равную разности между двумя уровнями, в виде фотона. В 1917 г. Альберт Эйнштейн, как мы уже говорили, доказал необходимость существования еще и индуцированного излучения, при котором возбужденные атомы или молекулы, под действием резонансных фотонов, немедленно возвращаются в основное состояние, испуская фотоны, неотличимые от тех, которые стимулировали этот возврат.