Чтение онлайн

на главную - закладки

Жанры

Нанотехнологии. Правда и вымысел

Балабанов Иван Викторович

Шрифт:

Рис. 38. Зондовый микроскоп SOLVER Next – победитель американского конкурса R&D 100 Award

Установка Ntegra Spectra – это комбинация (интеграция) СЗМ с конфокальной микроскопией/спектроскопией люминесценции и комбинационного рассеяния, позволяющая получать изображения с разрешением в плоскости до 50 нм.

Нанолаборатория имеет возможность работы в режиме регистрации пространственного трехмерного распределения спектров люминесценции и комбинационного рассеяния света, а также в режимах наноиндентации, наноманипуляции и нанолитографии.

Поставщиком кантилеверов для СЗМ-микроскопов фирмы ЗАО «НТ-МДТ» является также отечественное предприятие ФГУП «Научно-исследовательский институт физических проблем им. Ф. В. Лукина» – один из ведущих институтов отечественной микроэлектроники, разработчик и производитель многих микромеханических электронных компонентов для сканирующей зондовой микроскопии.

Отдельное направление исследований составляют методы, при которых зонд сканирующего микроскопа является наноиндентором. С его помощью исследуемые поверхности подвергаются многократной нагрузке одной и той же области или нанесению наноцарапин. При этом можно моделировать процессы износа и усталости в приповерхностных слоях, изучать фазовые переходы, индуцированные высоким гидростатическим давлением под индентором, характеристики материала, зависящие от времени, а также коэффициенты скоростной чувствительности механических свойств на стадии погружения и вязкоупругого восстановления отпечатка после снятия разгрузки.

Данными методами можно оценивать пористость материалов, величину и распределение внутренних напряжений, толщину и механические свойства тонких слоев и покрытий, исследовать структуру многофазных материалов, определять модули упругости, скорость звука, анизотропию механических свойств и т. д.

Обычно, кроме нанотвердости, определяют степень адгезии, модуль Юнга, плотность, однородность. К настоящему времени рекордными, по-видимому, являются измерения, проведенные на пленках толщиной в единицы нанометров.

С помощью наноиндентора проводят также исследования электрических токов и химических реакций в малой области поверхности, расположенной близко к атомарному острию зонда. В перспективе такой способ повлечет за собой развитие наноэлектроники нового поколения (так

называемой одноэлектроники, то есть приборов, управляемых одним электроном) и нанолитографии. Нанолитография – это высокоразрешающая технология локального химического модифицирования поверхности для получения сверхвысокой плотности элементов на кремниевой подложке, записи информации и т. п.

На практике достаточно распространен и часто применяется метод электронной оже-спектроскопии (Auger spectroscopy, AES). Электронная оже-спектроскопия – это раздел спектроскопии, изучающий энергетические спектры оже-электронов, которые названы в честь их первооткрывателя, французского физика Пьера Оже (Pierre Auger), и возникают при облучении исследуемого вещества электронным пучком. Спектры оже-электронов широко используются для определения элементного состава газов и поверхности твердых тел, изучения электронного строения и химического состояния атомов в пробе.

Оже-эффект заключается в том, что под действием ионизирующего излучения на одном из внутренних электронных уровней (например, ^-уровне) атома образуется вакансия, на которую переходит электрон с более высокого уровня (например, L^-подуровня). Возникший при переходе электрона избыток энергии может привести к испусканию рентгеновского фотона (излучательный переход) или выбрасыванию еще одного электрона (безызлучательный переход). Этот электрон называют оже-электроном.

Оже-эффект наблюдается у всех элементов периодической системы, начиная с лития, причем вероятность его проявления для легких элементов достигает 0,99 и убывает с увеличением порядкового номера элемента. Спектры оже-электронов регистрируют с помощью оже-спектрометров, дающих возможность получать энергетические спектры в виде зависимостей N[E]-E и [dN(E)/dE]-E, где N(E) – выход (или интенсивность тока) оже-электронов, равный числу оже-электронов, испускаемых исследуемым объектом в единицу времени.

По спектрам оже-электронов проводится качественный и количественный элементный анализ пробы. Для этого пользуются спектрами в координатах [dN(E)/dE]-E, которые обеспечивают более высокую чувствительность и точность анализа. Элемент, присутствующий в пробе, идентифицируют по значению кинетической энергии Е оже-электронов, поскольку эта величина зависит только от энергии связи электронов на электронных уровнях и, следовательно, определяется природой атомов.

В настоящее время известно достаточно много эффективных методов исследования поверхностей и объектов на наноуровне.

Среди них не только рассмотренные выше способы в различном исполнении, которые основаны на регистрации электронов, например, дифракция электронов и полевые методы (полевая электронная и ионная спектроскопия), рентгеновская фотоэлектронная и ультрафиолетовая электронная спектроскопия и оже-спектроскопия, но и специфические методы, базирующиеся на дифракции рентгеновского синхротропного излучения, рентгеновская спектроскопия поглощения (EXAFS, XANS, NEXAFS), мессбауровская спектроскопия, методы ядерного магнитного резонанса и электронного парамагнитного резонанса.

Только описание принципов исследования и специального оборудования может занять несколько больших книг, поэтому мы не будем утруждать читателя этой специальной информацией.

Основные свойства наноструктур

Multum in parvo (многое в малом).

Латинская пословица

Первым и самым главным признаком наночастиц, несомненно, является их геометрический размер – протяженность не более 100 нм хотя бы в одном измерении. Именно с таких размеров может наблюдаться качественное изменение свойств наночастиц по сравнению с макрочастицами того же самого вещества. Например, нанонить паутины способна надежно удерживать огромных по сравнению с ее толщиной насекомых.

Именно размерными эффектами определяются многие уникальные свойства наночастиц и наноматериалов. Критический размер для различных характеристик (механических, электрических, магнитных, химических, квантовых и др.) может варьироваться, как и характер изменений (равномерный или неравномерный). Например, электропроводность, область прозрачности, магнетизм и некоторые другие свойства начинают зависеть от размера частицы при уменьшении кристалла вещества до размеров 10–20 нм и менее (рис. 39).

Доля атомов в поверхностном слое (толщиной около 1 нм), естественно, растет с уменьшением размера частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от «внутренних» атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов атомной реконструкции, изменения структурного расположения атомов и их свойств.

Атомы, расположенные по краям моноатомных террас, уступов и впадин на них, где координационные числа значительно ниже, чем в объеме, находятся в совершенно особых условиях.

Рис. 39. Изменение физико-химических характеристик материала (ФХХМ) в зависимости от размера структуры: 1 – с максимумом; 2 – с насыщением; 3 – с осциллирующим изменением свойств

Взаимодействие электронов со свободной поверхностью порождает специфические приповерхностные состояния, именуемые уровнями Тамма. Все это заставляет рассматривать поверхность (или межфазную границу) как некое новое состояние вещества.

Работы русского физика Игоря Евгеньевича Тамма, удостоенного с коллегами Нобелевской премии по физике в 1958 году, были посвящены классической электродинамике, квантовой механике, теории твердого тела, физической оптике, ядерной физике, теории элементарных частиц, проблемам термоядерного синтеза. В 1930 году Тамм построил квантовую теорию рассеяния света в кристаллах, впервые произвел квантование акустических волн, введя понятие фононов – звуковых квантов.

Учитывая абсолютные размеры наночастиц с определенными допущениями, можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют аномально высокую удельную плотность поверхности, поскольку вся их масса сосредоточена в поверхностном слое. Кроме того, расстояние между графитовыми слоями в многослойных системах (0,335 нм) оказывается достаточным, чтобы некоторые вещества в атомарном виде (например, молекулы водорода Н2) могли заполнять их межстенное пространство. Данное пространство (в совокупности с внутренними каналами и даже внешней поверхностью) образует уникальную емкость для хранения газообразных, жидких и даже твердых веществ.

Наполнение внутренней поверхности нанотрубок происходит в результате капиллярных явлений. Впервые капиллярные эффекты в нанотрубках были обнаружены во время эксперимента, при котором фуллереновую дугу, предназначенную для синтеза нанотрубок, зажигали между электродами диаметром 0,8 см и длиной 15 см при напряжении 30 В и силе тока 180–200 А. В результате термического разрушения поверхности графитового анода на катоде образовывался слой материала высотой 3–4 см, его извлекали из камеры и выдерживали в течение 5 ч при температуре 850 °C в потоке углекислого газа. Эта операция, в результате которой образец терял около 10 % массы, способствовала очистке образца от частиц аморфного графита и обнаружению в осадке нанотрубок. Центральную часть осадка, содержащего нанотрубки, помещали в этанол и обрабатывали ультразвуком. Диспергированный в хлороформе продукт окисления наносили на углеродную ленту с отверстиями для наблюдения с помощью электронного микроскопа. Трубки, не подвергавшиеся обработке, имели бесшовную структуру, головки правильной формы и диаметр от 0,8 до 10 нм. В результате окисления вершины около 10 % нанотрубок были повреждены, часть слоев вблизи них также была содрана.

Предназначенный для наблюдений образец, содержащий нанотрубки, заполняли в вакууме каплями расплавленного свинца, которые получали в результате облучения металлической поверхности электронным пучком. При этом на внешней поверхности нанотрубок наблюдались капельки свинца размером от 1 до 15 нм. Нанотрубки отжигали в воздухе при температуре 400 °C (выше температуры плавления свинца) в течение 30 мин. Как показали результаты наблюдений, выполненных с помощью электронного микроскопа, часть нанотрубок после отжига заполнялась твердым материалом. Аналогичный эффект заполнения нанотрубок наблюдался при облучении головок, открывающихся в результате отжига, мощным электронным пучком. При достаточно сильном облучении материал вблизи открытого конца трубки плавился и проникал внутрь. Наличие свинца внутри трубок было установлено методами рентгеновской дифракции и электронной спектроскопии. Диаметр самого тонкого образовавшегося свинцового провода составлял 1,5 нм.

Итак, с одной стороны, трубки могут служить сосудами для хранения агрессивных сред. С другой стороны, находящиеся внутри элементы модифицируют свойства самих трубок, позволяя создавать разнообразные гетероструктуры на их основе.

Одним из размерных параметров нанотрубок является так называемая хиральность – понятие, применяемое в химии и указывающее координаты шестиугольника, который в результате сворачивания плоскости в трубку должен совпадать с шестиугольником в начале координат.

Термин «хиральность» в 1884 году впервые сформулировал английский физик, один из основателей термодинамики и кинетической теории газов, Уильям Томсон (лорд Кельвин, William Thomson), но распространение этот термин получил после 1966 года, когда был введен в стереохимию швейцарским химиком-органиком хорватского происхождения Владимиром Прелогом (Vladimir Prelog).

Наиболее распространенным является представление трубки двумя целыми числами ( n , m ). Сумма этих чисел равняется количеству шестиугольников, составляющих диаметр цилиндра. Угол ориентации графитовой плоскости относительно оси трубки определяет проводимость, которой она будет обладать: металлической или полупроводниковой. В последнем случае ширина запрещенной зоны задается геометрическими параметрами: хиральностью (углом скручивания) и диаметром нанотрубки.

В зависимости от значений параметров (n, m) различают:

• прямые (ахиральные) нанотрубки;

• «кресло», или «зубчатые» нанотрубки – n = m;

• зигзагообразные нанотрубки – m = 0 или n = 0;

• спиральные (хиральные) нанотрубки.

Как уже отмечалось, углеродные нанотрубки бывают однослойными и многослойными. Нанотрубки первого типа можно получить в виде одномерной структуры в результате свертывания графеновой поверхности (рис. 40).

Рис. 40. Заготовка графеновой плоскости для получения нанотрубки с хиральностью (n, m) = (4, 2)

Диаметр трубки и угол свертывания (или шаг свертывания) обычно характеризуются кристаллографическим аналогом элементарной ячейки для двухмерного графенового листа, из которого

выкраивают единичный повторяющийся кусочек нанотрубки – «вектор свертывания» С = no1 + mo2, где а1 и а2 – базисные векторы графитовой гексагональной ячейки.

Свертывание производится так, чтобы начало и конец вектора С совместились. В пределе нехиральных случаев свертывание происходит по так называемой линии зигзаг (при m = 0) и «ковшик с ручкой» (другое название – «подлокотник кресла») при m = n. Эти направления на рис. 40 изображены пунктирными линиями. Вектор трансляции Т вдоль продольной оси нанотрубки перпендикулярен С, его величина показывает расстояние, на котором воспроизводится структура вдоль оси. Площадь свертывания, заключенная между Т и С (затемненная область), соответствует единичному участку нанотрубки, который многократно повторяется вдоль продольной оси.

Индексы хиральности (m, n) определяют диаметр D однослойной нанотрубки:

где do = 0,42 нм – расстояние между соседними атомами углерода в гексагональной сетке графитовой плоскости. Таким образом, зная D, можно найти хиральность (соотношение m и n).

Геометрия свертывания задает структуру нанотрубок – расстояние, силу связи между атомами. Расчеты электронной зонной структуры показывают, что именно индексы n и m определяют, какой будет электропроводимость системы – металлической или полупроводниковой. Металлические нанотрубки всегда проводят электрический ток даже при температуре абсолютного нуля, тогда как проводимость полупроводниковых трубок возрастает при нагревании.

В большинстве случаев минимальный диаметр трубки близок к 0,4 нм, что соответствует хиральностям (3, 3), (5, 0) и (4, 2), однако объекты такого диаметра наименее стабильны. Самой стабильной однослойной структурой является нанотрубка с индексами хиральности (10, 10), ее диаметр равен 1,36 нм.

Таким образом, появляется возможность создавать новые сверхпрочные композиционные конструкционные материалы, не изменяя химический состав компонентов, а регулируя размеры и формы частиц, составляющих вещество.

Первые же исследования показали, что нанотрубки обладают уникальными механическими свойствами. Модуль упругости вдоль продольной оси трубки достигает 70Х105 МПа. Для сравнения: у легированной стали он равняется 2,1Х105 МПа, а у наиболее упругого металла иттрия – 5,2Х105 МПа. Кроме того, однослойные нанотрубки имеют высокую (до 16 %) эластичность, то есть способность оказывать влияющей на них силе механическое сопротивление и принимать исходное состояние после ее снятия.

Наиболее типична для многослойных нанотрубок структура «русская матрешка» – в них трубки меньшего размера вложены в более крупные. Эксперименты сейчас достигли такого технического уровня, что с помощью специального манипулятора можно вытянуть внутренние слои, оставив внешние слои фиксированными (рис. 41).

Рис. 41. Исследование трибологических свойств нанотрубок: 1 – опытная нанотрубка; 2 – нанотрубка после удаления внешних слоев на вершине; 3 – нанотрубка с внутренними слоями, вытянутыми при помощи специального наноманипулятора; 4 – релаксация (возврат) внутренних слоев нанотрубки в исходное положение после снятия нагрузки

Нанотрубка удлиняется подобно телескопической антенне или удочке, приобретая коническую со ступеньками форму. Трубку укрепляют с одного конца и снимают с нее несколько слоев вблизи вершины, чтобы открыть кончик, за который можно «ухватиться». Затем к заостренному концу подводят манипулятор, двигая которым можно удлинять или укорачивать трубку, вытягивая внутренние слои из внешней оболочки. Если удалить манипулятор, вытянутая часть возвратится под действием сил притяжения Ван-дер-Ваальса, как пружина. Измерив время возвращения внутренних слоев после удаления манипулятора, определили силы статического (2,зх10-14 Н/атом) и динамического (1,5х10-14 Н/атом) трения одного слоя о другой.

Это указывает на уникальные трибологические свойства нанотрубок.

Таким образом, многослойная углеродная нанотрубка является великолепным цилиндрическим подшипником. Если внутреннюю часть оставить неподвижной, а внешнюю заставить вращаться, можно получить почти идеальный подшипник скольжения, в котором поверхность скольжения атомногладкая, а силы взаимодействия между поверхностями (силы Ван-дер-Ваальса) очень слабы. При этом статическая сила трения на единице площади оказывается равной всего лишь 60 Н см-2, а динамическая – 45 Н см-2. Как известно, коэффициент трения при скольжении – это отношение силы трения к силе нормального давления. Если предположить, что сила трения составляет 0,01 модуля сдвига, для многослойных трубок приблизительно равного 0,25Х105 МПа, то коэффициент трения получится 10-5 – на два порядка меньше, чем у лучших пар трения в макроскопических твердых телах. Следовательно, открывается возможность создать миниатюрные наноподшипники с пренебрежимо малыми силами трения, необходимые для наносистемной техники будущего (нанодрелей, наностанков и др.).

Кроме того, при высоких давлениях фуллерен С60 становится твердым, как алмаз. Его молекулы образуют кристаллическую структуру, состоящую из идеально гладких шаров, свободно вращающихся в гранецентрированной кубической решетке. Благодаря этому свойству C60 можно использовать в качестве твердой смазки. Фуллерены обладают также магнитными и сверхпроводящими свойствами.

В ряде работ исследованы причины возникновения так называемого масштабного эффекта – роста твердости при низких и сверхнизких нагрузках внедрения (порядка мкН), которые приводят к образованию отпечатков глубиной несколько нанометров.

При усилиях ниже некоторых критических (зависящих от природы материала, температуры, формы индентора и т. д.) практически все материалы проявляют в контакте упругое поведение. Типичные значения критической неразрушающей глубины составляют обычно несколько десятков нанометров.

Нагрузки, при которых наблюдается наноконтактное взаимодействие, могут возникать при трении без смазочного материала (сухом трении), абразивном и эрозионном износе поверхности мелкими частичками, локальной приповерхностной усталости, фреттинг-коррозии и т. п.

Другое уникальное свойство наноструктур – квантовые эффекты и (в связи с этим) необычные электронные свойства наночастиц, прежде всего углеродных нанотрубок.

С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами, связанными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры.

Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой (по крайней мере в одном направлении) ограничен и сравним с длиной электронной волны. В данных направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Это значит, что соответствующие им электроны могут иметь только определенные фиксированные значения энергии, вызывая дополнительное квантование энергетических уровней. Данное явление получило название квантового ограничения.

Так, с одной стороны, есть трубки с хорошей электронной проводимостью (выше, чем проводимость у признанных электрических проводников, например меди и серебра), а с другой стороны, большинство трубок – это полупроводники с шириной запрещенной зоны от 0,1 до 2 эВ. Управляя их зонной структурой, можно создать различные электронные приборы. В частности, появляется реальная перспектива разработки запоминающих устройств с плотностью записи до 1014 бит/см2.

Одно из самых замечательных свойств – связь между геометрической структурой нанотрубки и ее электронными характеристиками, которую можно предсказать на основе квантово-химических расчетов. Налицо возможность создания новых электронных приборов с рекордно малыми размерами. Еще одно достоинство нанотрубок связано с холодной эмиссией электронов, которая возникает при приложении электрического поля вдоль оси трубки. Напряженность поля в окрестности верхней части в сотни раз превышает напряженность, существующую в объеме, что приводит к аномально высоким значениям тока эмиссии при сравнительно низком внешнем напряжении и позволяет использовать нанотрубные макроскопические системы в качестве холодных эмиссионных катодов.

Взаимодействие электронных волн в наноразмерных структурах может сопровождаться интерференцией. Ее отличительная особенность состоит в том, что наличие заряда у электрона дает возможность управления им с помощью локального электростатического или электромагнитного поля, влияя на распространение электронных волн.

Рассмотренные квантовые явления уже используются в разработанных к настоящему времени наноэлектронных элементах для информационных систем. Однако ими не исчерпываются все возможности приборного применения квантового поведения электрона. Активные поисковые исследования в этом направлении продолжаются.

По данным Nanotechweb, группой ученых из лабораторий IBM (США) и Университета Твенте (Нидерланды) при исследовании структуры дефектов нанотрубок выявлено, что углеродные нанотрубки могут излучать инфракрасное излучение. «Обнаруженная электролюминесценция локализована в области дефектов в регулярной структуре наноматериала, – заявил доктор Фаэдон Авурис (Phaedon Avouris). – Электрический ток возбуждает пары электрон – дырка в местах дефектов, что и приводит к излучению».

Доктор Авурис отмечает, что по интенсивности процесс излучения на несколько порядков превышает аналогичные процессы в балк-полупроводниках. Это, по его мнению, объясняется более сильным взаимодействием электронов и дырок, вызванным «одномерным» характером структуры нанотрубок.

Открытие униполярной люминесценции позволит определять микродефекты наноматериалов, в том числе и нанотрубок. Для более наглядного подтверждения эффекта фотолюминесценции доктор Авурис и его коллеги создали полевой транзистор на основе нанотрубки. Вход и выход устройства состоят из слоев палладия толщиной 20 нм и слоя титана толщиной 0,5 нм. Транзистор находится на подложке из полиметилметакрилата (PMMA), что создает диэлектрическую среду для работы транзистора.

«Механизм свечения нанотрубок в инфракрасном диапазоне схож с аналогичными явлениями в светоизлучающих макроскопических светодиодах, – отмечает Авурис. – Однако в нашем случае фотоэмиссия более интенсивна вследствие специфической морфологии нанотрубок. Есть еще одно важное отличие от макросветодиодов: нанотрубке не нужен допинг для формирования фотосистемы. Также нанотрубки излучают свет по всей своей длине, что довольно необычно».

Особый интерес представляют уникальные свойства квантовых точек, в частности оптические и фотолюминесцирующие эффекты, при которых поглощение фотона рождает электрон-дырочные пары, а взаимодействие электронов и вакансий приводит к флуоресценции (табл. 8). Квантовые точки обладают достаточно узким и симметричным пиком флуоресценции. В зависимости от размера и состава (типа) квантовых точек флуоресценция может наблюдаться не только в видимой части спектра, но и в ультрафиолетовой или инфракрасной области.

Так, квантовые точки ZnS, CdS и ZnSe флуоресцируют в ультрафиолетовой области, CdSe и CdTe – в видимой, а PbS, PbSe и PbTe – в ближней инфракрасной области (порядка 7003000 нм). Более того, квантовые точки на основе халькогенидов кадмия в зависимости от размера флуоресцируют разными цветами.

Поделиться:
Популярные книги

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Коллектив авторов
Warhammer Fantasy Battles
Фантастика:
фэнтези
5.00
рейтинг книги
Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Мы все умрём. Но это не точно

Aris me
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
Мы все умрём. Но это не точно

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Подари мне крылья. 2 часть

Ских Рина
Любовные романы:
любовно-фантастические романы
5.33
рейтинг книги
Подари мне крылья. 2 часть

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Мир Возможностей

Бондаренко Андрей Евгеньевич
1. Мир Возможностей
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Мир Возможностей

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я