Наполовину мертвый кот, или Чем нам грозят нанотехнологии
Шрифт:
Скорее всего (и с большой степенью уверенности), квантовый компьютер невозможен. Но если это не так, то, построив его, мы можем кардинально изменить базовые свойства нашего мира. В частности, о свободе воли можно будет забыть.
Подчеркнем еще раз. Авторы скептически относятся к самой возможности существования квантового компьютера, и это будет ясно из последующего. Но при учете рисков необходимо опираться не только на свои представления, тем более, если они носят устойчивый (если не сказать — массовый) характер. Вот их типичный образчик, заимствованный из книги С. И. Доронина «Квантовая магия».
«Сейчас каждый из нас хотя бы в самых общих чертах представляет, что такое обычный компьютер. А что вы скажете насчет компьютера,
Патетично, не правда ли? Этакая современная Вавилонская башня — до Бога достает! (Говорят, точнее, пишут, один раз попробовали. Впрочем, это притча библейская.)
Авторы считают, — думаем, согласится и читатель, — что если «что-то» превышает число частиц во Вселенной, то это прекрасный повод усомниться в реализуемости этого «что-то». Трудно представить себе, что человеку потребуется меньше материала, чем природе для реализации, по сути, одного и того же.
Но допустим на минуту, что квантовый компьютер все ж? возможен, пусть и с меньшим числом состояний: для наших потребностей хватило бы совсем «немного» — порядка 10 25бит, что превышает современный уровень накопленной информации в 10 000 раз. Даже такой «скромный» квантовый компьютер не безобиден. Чтобы понять это, придется разобраться в том, как он работает (а точнее, как предположительно он должен работать).
И начать придется с воображаемого кота, с усами и хвостом. Назовем его котом Шредингера. Это тот самый кот, над которым великий физик, один из создателей квантовой механики, ставил свои мысленныеэксперименты. В нашем мире кот может быть либо жив, либо мертв. Либо то, либо другое. Но не так в мысленном эксперименте Шредингера. Вот этот мысленный эксперимент.
В закрытый ящик одновременно помещен воображаемый кот, а также воображаемое устройство с радиоактивным ядром и емкостью с ядовитым газом. Устройство работает просто: распад ядра приведет в действие механизм, открывающий емкость с газом, в результате чего подопытный кот умрет, да простят нас защитники животных. Вероятность распада ядра составляет 1/2 .
Парадокс заключается в том, что, согласно квантовой механике, если за ядром не наблюдают (попросту, за ним никто не следит — ни прямо, ни косвенно [51] ), то кот находится в так называемом смешанном состоянии, другими словами, кот одновременнонаходится во взаимоисключающих состояниях (он одновременно и жив, и мертв). Однако если открыть ящик, можно убедиться, что кот находится в конкретном состоянии: он или жив, или мертв.
Все сказанное — не шутка. Именно так устроен квантовый мир. Одновременно «живомертвые» квантовые частицы — реальность нашего мира. Более того, среди них есть и такие, для которых такая смесь гораздо естественнее, чем «чистые» состояния. Таковы, например, К°-мезоны [52] .
51
Косвенно,
52
См., например, Феймановские лекции, т. 9.
Существует несколько интерпретаций (т. е. попыток «разумного» объяснения) этих квантовых странностей, примиряющих нас с тем, что мы видим наш мир совсем не таким. Коты и кошки у нас живомертвыми не бывают. Эти интерпретации очень разные, и какая из них верна, мы не знаем. Для нас интересна интерпретация Эверетта. Согласно ей, смешанное состояние предусматривает наличие двух параллельных вселенных, в которых одновременно существует наш кот: в одной из них он жив, во второй — мертв. Что касается наблюдателя эксперимента (т. е. нас с вами), то, согласно интерпретации Эверетта [53] , он также оказывается вместе с котом сразу в двух вселенных, т. е., выражаясь «квантовым языком», «запутывается» в смешанном квантовом состоянии.
53
Хью Эверетт III (1930—1982) — американский физик, первым (1957 год) предложивший многомировую интерпретацию квантовой механики.
Повторим: в квантовом мире есть смешанные состояния. Скажем, наполовину (т. е. 1/2 ) кот жив и наполовину мертв. Когда мы смотрим на кота (это «смотрение» в квантовой механике называется «наблюдением»), кот либо жив, либо мертв — как повезет (вероятности мы определили). Но до того, как мы посмотрели, мы имеем дело со смешанным состоянием. Оно реально! Более того, реальны любые суперпозиции (суммы) состояний кота. Например, такие [54] :
|1 > = 1/2 (|кот живой> + |кот мертвый>) и
54
Именно такая странная запись состояний и используется в квантовой физике. Для нее придумали забавное название: открывающая скобка «БРА» и закрывающая скобка «КЕТ» — все вместе бракет, или по-русски «брикет».
|2> = 1/2 (|кот живой> — |кот мертвый>)
Из этих состояний можно получить как живого, так и мертвого кота, складывая (вычитая) их друг с другом; проверьте:
|кот живой> = |1> + |2>
|кот мертвый> = |1 > — |2>
Тот, кто знаком хоть немного с линейной алгеброй, легко узнает здесь знакомые векторы.
Так вот, квантовый компьютер — это операции с именно такими векторами — смешанными состояниями, а они возможны только в квантовом мире.
Введем, например, в квантовый компьютер телефонный справочник. Чтобы записать имя и телефон одного абонента, предположим, нужно 80 знаков или байт. Каждый байт состоит из 8 бит. Бит — это состояние: 0 или 1. Если в городе 10 миллионов абонентов, потребуются 80x8x10 000 000 бит.
Но если мы будем записывать смешанные состояния — каждый бит будет смесью битов всех 10 миллионов абонентов, нам потребуется их в 10 миллионов раз меньше. И места надо меньше, и «обработать» можно одним действием — для этого квантовый компьютер и придумали.
Вот только биты должны быть связаны, «спутаны» друг с другом. Мы должны знать, что вот это — от этого абонента, вот то — от другого, хоть и в разных битах. Повторим, такое возможно именно в квантовой механике.
Но вот мы полезли в справочник, чтобы посмотреть телефон нашего знакомого. Читаем: Иванов Иван Иванович, телефон номер такой-то.
А теперь давайте вспомним интерпретацию Эверетта и нашу «впутанность» в состояния. Глянули — а кошка мертва. Глянули — а знакомого нашего зовут Иван Иванович. А ведь могло быть и иначе: кошка жива, а товарищ — Любовь Петровна. Не повезло просто.
Один на миллион. Трилогия
Один на миллион
Фантастика:
боевая фантастика
рейтинг книги
Record of Long yu Feng saga(DxD)
Фантастика:
фэнтези
рейтинг книги
Игра с огнем
2. Мой идеальный смерч
Любовные романы:
современные любовные романы
рейтинг книги
Бастард Императора
1. Бастард Императора
Фантастика:
фэнтези
аниме
рейтинг книги
Хозяин Теней
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Вор (Журналист-2)
4. Бандитский Петербург
Детективы:
боевики
рейтинг книги
Прорвемся, опера! Книга 2
2. Опер
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Вторая жизнь майора. Цикл
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
рейтинг книги
Фею не драконить!
2. Феями не рождаются
Фантастика:
юмористическая фантастика
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
