Население Земли как растущая иерархическая сеть II
Шрифт:
Если Поршнев интересуется моментом начала истории, то Дьяконов задается вопросом о ее конце, который, по его выражению, «совпадает с переходом экспоненциального развития к вертикальной линии». В этом и состоит его главная заслуга и причина по которой историческая сингулярность как точка, к которой сжимаются циклы мирового исторического развития может быть названа «сингулярностью Дьяконова». (О гиперболе Фёрстера И.М. Дьяконов либо не знает, либо считает, что ее можно называть «экспонентой». Но у экспоненты нет сингулярности, а у гиперболы – есть. Эта точка сингулярности кривой гиперболического роста и может быть названа «исторической сингулярностью». Но заслуга в этом уже С.П. Капицы.)
Термин
«Вводятся представления о масштабно-инвариантном аттракторе планетарной эволюции и его завершении в режиме с обострением «сингулярностью Дьяконова» в первой половине XXI века». <…>
«Удивительной находкой оказалось то, что подход И.М. Дьяконова, который в основу анализа положил последовательность фазовых переходов социальной системы, естественным образом обобщается на всю эволюцию – и биосферы, и цивилизации, начиная с появления жизни на Земле. Эволюция цивилизации в определенном смысле оказывается гладким автомодельным продолжением эволюции биосферы, а точка сингулярности получает статус некоторого переломного или завершающего момента всей четырехмиллиардолетней истории развития жизни на Земле» [9].
Приведенные выдержки воспринимаются с трудом, но даже если не вникать в смысл этой физикалистской абракадабры можно все-таки понять, что Панов определяет сингулярность Дьяконова как предельную точку последовательности дат своих планетарных революций. Такая инициатива представляется выражением самонадеянности, некомпетентности и бестактности ее автора. Здесь важно не только то, что совмещая биосферную и историческую сингулярность, Панов приходит к абсурдным, апокалиптическим результатам.
Даже и сам термин «сингулярность» Панов понимает неправильно. Действительно, для того, чтобы можно было говорить о сингулярной точке истории, эволюции необходимо, чтобы существовал количественный показатель исторического или эволюционного развития, который бы неограниченно возрастал за конечный промежуток времени. Поскольку подобный показатель в построениях Панова отсутствует [18] , то ни о какой вертикали Снукса – Панова, ни о каком режиме с обострением в первой четверти XXI века – говорить не приходится.
18
«Пановская» частота фазовых переходов или, что то же самое, «коротаевская» скорость макроэволюционного развития таким показателем считаться не может. Подробнее см. далее: «Миф о пановско—коротаевской сингулярности».
Так, например, если считать, что ускорение исторического процесса было не гиперболическим, а экспоненциальным, то «переход к вертикали» занимал бы бесконечно долгое время. И речь в таком случае шла бы не о точке сингулярности, а о некотором конечном (в идеальном случае бесконечном) интервале времени – эпохе перемен.
Говорить об исторической сингулярности или сингулярности Дьяконова стало возможным лишь после работ С.П. Капицы, который первым обоснованно связал эволюцию человека и историю человечества с растущей численностью населения Земли. Согласно принципу демографического императива Капицы именно численность населения Земли в эпоху гиперболического роста и есть та переменная, которая может служить естественной мерой эволюции и развития человечества как системы.
Поскольку в формуле Фёрстера в двадцатых годах XXI столетия ее значение устремляется к бесконечности, понятие «сингулярность Дьяконова» обретает смысл. В таком случае историческая сингулярность или сингулярность Дьяконова может
Эта глава написана с единственной целью: противостоять интерпретации понятия «сингулярность Дьяконова» в понимании Панова и дать ему единственно правильное, на наш взгляд, определение. Весь представленный ниже материал можно разделить на две части.
В первой части, сингулярность Дьяконова – Капицы будет определена нами исходя из развиваемой здесь гипотезы о растущей сети, сопровождающей эволюционный и исторический процесс. Такое определение, разумеется, не может считаться бесспорным, поскольку опирается на гипотезу.
Так как ошибка здесь недопустима по этическим соображениям, ведь эта историческая сингулярность ассоциируется с именами известного историка и выдающегося популяризатора науки, – нами будет еще раз дано ее определение, но уже без всяких ссылок на нашу гипотезу, а на основании лишь известных исторических фактов. Это будет сделано во второй части нашей работы.
Сингулярность Дьяконова – Капицы как момент завершения первого цикла демографического перехода
Прежде всего, покажем, что сингулярность Дьяконова – Капицы, согласно предлагаемой здесь гипотезе, приходится на 2022 год с погрешностью примерно в два, три года и в полном соответствии с демографическими данными. Запишем формулу теоретической гиперболы:
Рис. 1. Зависимость числа носителей сети в клаттерах от неолита до второй половины ХХ века.
Здесь N(t) – численность носителей в клаттерах (один клаттер содержит 65536 носителей), а t – время в циклах ( = 40 лет) от начала неолита. Моменты времени t = 0, 128, 192, 224, 240, 248, 252, 254, 255 – даты, когда сеть достигает гармонической стадии своего роста. (Продолжительность восьми исторических периодов, соответственно: 128, 64, 32, 16, 8, 4, 2, т.) Момент t = 256 – точка сингулярности или время окончания первого цикла демографического перехода, если отсчет времени вести от начала неолита.
Если отсчет вести от начала новой эры, точку сингулярности получаем, прибавляя к дате достижения сетью совершенства (т. е. к 1982 году) время цикла сети: 1982 + 40 = 2022. Постоянная Фёрстера для теоретической гиперболы равна: С = kK2 = 1.1·655362·40= 1.89·1011 лет. Если к тому же время измерять в годах, а численность в миллиардах человек, то формула (1) приобретает вид:
Рис. 2. Зависимость численности населения Земли от неолита до наших дней согласно теории.
Но именно так и выглядит эмпирическая гипербола, лучше всего описывающая рост населения мира за последние сорок тысяч лет:
Рис. 3. Зависимость численности населения Земли от палеолита до наших дней по данным Мак-Эведи, Джоунса и Кремера.
Эта гиперболическая зависимость, из семейства гипербол Фёрстера, лучше всего задает рост численности населения мира от 40.000 г. до н. э. до 1970 г. по данным Мак-Эведи, Джоунса (1978) и Кремера (1993) для периода от 40.000 г. до н. э. до 1950 г. н. э. [13]