Научно-эзотерические основы мироздания. Жить, чтобы знать. Книга 2
Шрифт:
Чтобы познакомиться с пространством Римана (с пространством постоянно положительной кривизны), возьмем в руки глобус, но отвлечемся от физической географии планеты, оставив только сетку меридианов и параллелей. Сфера – это пространство с постоянной положительной кривизной. Что представляет собой прямая линия на сфере? Если понимать прямую линию как линию нулевой кривизны, то на сфере прямых нет; любая изогнута, любая имеет кривизну. Но если прямая – это кратчайшее расстояние между двумя точками, то дело обстоит иначе. На сфере прямая – это часть дуги.
Следовательно, все меридианы – это прямые на сфере. И экватор тоже. Параллели определению прямых
Сферическое пространство, или пространство постоянной положительной кривизны, замкнуто и конечно (от слова «конец»), также как замкнут и конечен шар. Таким же свойством обладает и другое пространство положительной кривизны – эллиптическое. (Как окружность есть частный и предельный случай эллипса, так и шар есть частный и предельный случай эллипсоида. Поэтому эллиптическая поверхность, а равно и эллиптическое пространство, есть обобщение сферических поверхности и пространства.)
Замкнутость и конечность пространства Римана нанесли удар по укоренившимся представлениям о бесконечности пространства.
Риман понял, что слова «безграничность» и «бесконечность» имеют разный смысл. Безграничность – значит без границ! А бесконечность – это то, что простирается без конца. Это расстояние, которое хотя и измеряемо, но в принципе не может быть измерено до конца, потому что конца просто нет.
Он утверждал: «При рассмотрении пространственных построений в направлении неизмеримо большого, следует различать свойства ограниченности и бесконечности – первое из них есть свойство протяженности, второе – метрическое свойство»[4].
Чрезвычайно важен физический смысл, но еще более важен философский смысл этого открытия. Ведь философы были убеждены, что бесконечность и безграничность – синонимы.
Риман говорил: «То, что пространство есть неограниченное трижды протяженное многообразие [3] , является допущением, принимаемым в любой концепции внешнего мира. Но отсюда никоим образом не следует бесконечность пространства: напротив, если припишем пространству постоянную меру кривизны, то придется допустить конечность пространства, как бы мала ни была мера кривизны, лишь бы она была положительной» [4].
3
Под трижды протяженным многообразием имеется в виду трехмерное пространство.
Именно безграничное, но конечное пространство положит А. Эйнштейн в основу своей теории относительности.
А как обстоят дела с параллельными прямыми в пространстве Римана? Оказывается, параллельных в геометрии Римана нет. Ибо меридианы, которые являются прямыми, обязательно пересекаются, и даже в двух точках.
Таким образом, в плоскости Евклида всегда есть одна прямая, параллельная исходной, в плоскости Лобачевского – две, а в плоскости Римана их нет вообще. Интересна также ситуация с углами. Если у Лобачевского сумма углов треугольника меньше суммы двух прямых, у Евклида – равна сумме двух прямых, то у Римана – больше суммы двух прямых. По этим показателям геометрия Евклида оказалась промежуточной между геометрией Лобачевского и Римана.
Отметим, что геометрия Римана называется еще «эллиптической», геометрия Лобачевского – гиперболической, а геометрию Эвклида называют плоской.
Работу по развитию неевклидовой геометрии
Очень урожайным оказался 1868 год. В печати одна за другой стали появляться статьи о неевклидовой геометрии. Это были работы итальянского математика Э. Бельтрама, поразительные статьи Гельмгольца, и, наконец, была опубликована переписка великого Гаусса с друзьями, поскольку обет молчания после его смерти закончился. Из переписки следовало, что Гаусс и сам упорно занимался неевклидовой геометрией, высоко оценивал работы Лобачевского, но при жизни промолчал и не поддержал открыто русского ученого, подвергавшегося осмеянию и гонениям.
С 1868 года началось массовое признание новых идей неевклидовой геометрии. Отныне она становится одной из магистральных дорог в математике. Продолжили работу блестящий ученый конца XIX века профессор Геттингенского университета Давид Гильберт, замечательный российский математик Александр Фридман, блестящий английский математик Уильям Клиффорд и т. д.
Таким образом, к концу XIX века неевклидова геометрия буквально выбила из-под классической физики одну из трех опор, на которых та базировалась. И при этом было совершенно неясно, что делать дальше с эфиром, как переносчиком взаимодействий.
Неясна была и ситуация с принципом относительности Галилея, который был справедлив для механических явлений. Во всех инерциальных системах (то есть движущихся прямолинейно и равномерно по отношению друг к другу) применимы одни и те же законы механики. Но справедлив ли этот принцип для немеханических явлений, особенно для тех, которые связаны с электромагнитными явлениями?
Ответы на эти вопросы связаны с изучением взаимосвязи движущихся тел с эфиром, но не как с механической средой, а как со средой-носителем электромагнитных колебаний. Требовалось ответить на вопросы: как взаимодействуют весомые тела и эфир (полагали, что эфир проникает в тела); отличается ли эфир внутри тела от находящегося вовне; как ведет себя эфир внутри тел при их движении и т. д. А доказательств существования эфира по-прежнему не было. Как можно определить свойства неизвестно чего?
Изгнание эфира
Для дальнейшего развития теоретической физики нужна была теория, которая могла бы разрешить очередной сложившийся кризис. Долгое время попытки ученых в этом вопросе были тщетны, и лишь спустя почти четверть века после первого опыта Майкельсона выход из создавшегося положения в 1905 году предложил молодой Альберт Эйнштейн, опубликовав свою первую работу по теории относительности «К электродинамике движущихся тел».
Анализируя результаты опытов Физо и Майкельсона, Эйнштейн в своей работе приходит к выводу, что следует отказаться от введения понятия «эфир», так как предположение о том, что эфир покоится одновременно в двух системах (в системе, связанной с Землей, в опыте Майкельсона и в неподвижной системе в опыте Физо), является абсурдным.
В свое время опыт Физо был объяснен наличием мирового неподвижного эфира, в котором движутся все тела. Опыт Майкельсона опроверг эту гипотезу: скорость света относительно Земли всегда имела одно и то же значение независимо от того, движется Земля в направлении движения луча света или навстречу этому лучу. Это можно было бы объяснить движением Земли вместе с околоземным эфиром, в котором распространяется луч света. О возможности такого объяснения говорит и Эйнштейн, но тогда становится непонятным опыт Физо, показавший, что тело не движется вместе с эфиром.