Наука высокого напряжения. Фарадей. Электромагнитная индукция
Шрифт:
В конце концов Сайрус Филд вынужден был согласиться, что Томсон и Фарадей правы и невидимые силовые поля, способные переносить электрические заряды, все же существуют. То есть решение состояло не в том, чтобы запустить больше электронов в подводный кабель, а в том, чтобы превратить кабель в водяную трубку. Как и говорил Томсон, питание кабеля от батареи большей мощности вызывало возникновение более мощного поля, следовательно, увеличивалось взаимодействие с оплеткой и водой; часть поля подталкивала свободные электроны
В 1866 году с помощью крупнейшего парохода той эпохи «Гpeйm Истерн» был проложен новый кабель, сделанный согласно инструкциям Томсона. «Грейт Истерн» мог перевозить 5800 километров кабеля и 500 человек. Претерпев несколько аварий, например разрыв кабеля на расстоянии 1900 километров, 27 июля 1866 года он прибыл из Ирландии на остров Ньюфаундленд, где произошли первые успешные передачи сообщений. Кабель работал отлично и практически бесперебойно со скоростью передачи до восьми слов в минуту. Стоимость сообщения из 20 слов была равна 150 долларам — немалые деньги в те годы. Фарадей был болен и состарился, но считается, что Томсон сам сообщил ему об успехе проекта и подтверждении его теорий.
ТЕОРЕТИЧЕСКИЕ ОТГОЛОСКИ: МАКСВЕЛЛ И ЭЙНШТЕЙН
Открытие электромагнитной индукции суммировало все последующие эксперименты, проведенные после первого и являющиеся его вариациями. Весной 1832 года Фарадей создал и опробовал в действии самые разные катушки, гальванометры и другие аппараты, разработанные, чтобы проверить весь поток идей, пришедших ему в голову после первого успеха. В следующие месяцы Фарадей установил принципы электромагнитной индукции, на которых основывается современная теория об электричестве.
Это открытие играло решающую роль для развития физики, однако Фарадей до конца не отдавал себе отчет в том, что именно он открыл. У ученого были некоторые довольно туманные идеи о следствиях обнаруженных незначительных отклонений стрелки гальванометра. И действительно, в его дневнике мы можем прочесть о разочаровании, которое он испытал, увидев, что эти импульсы слишком слабы и непродолжительны.
Однако в ноябре 1831 года, когда Фарадей передавал на суд общественности свои знания о силовых магнитных линиях, в Шотландии родился физик Джеймс Клерк Максвелл, который в 1856 году перевел открытия Фарадея на язык математики. Самая важная часть работы Максвелла пришлась на промежуток между 1864 и 1873 годами, когда он привел имеющиеся знания к системе уравнений, объединяющих электричество и магнетизм. Так появилась теория электромагнетизма. Она утверждала, что электричество и магнетизм не существуют по отдельности, а также доказывала, что свет является частью электромагнитной среды, распространяющейся со скоростью 300000 км/с.
Джеймс Клерк Максвелл использовал для построения своей великой теории электромагнетизма, являющейся обобщением всех электрических и магнетических явлений, три основных элемента:
— эксперимент Эрстеда (1820), сделавший очевидным существование магнетического эффекта, создаваемого движущимися зарядами;
— открытия Фарадея (1831), доказавшие, что магнитные поля при изменении со временем создают движение электрических зарядов, в проводниках (индукцию);
— описание Шарлем Кулоном (1785) за полвека до этого в виде закона способа взаимодействия электрических зарядов: величина каждой отдельной электрической силы прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними.
Это обобщение позволило Максвеллу
Позднее исследования Фарадея лягут в основу развития специальной теории относительности Альберта Эйнштейна, сформулированной в 1905 году. Если быть более точными, специальная теория относительности возникла на основе критики интерпретации Максвелла закона Фарадея об электромагнитной индукции.
Две великие концептуальные революции в физике начала XX века — теория относительности и квантовая физика — нашли вдохновение в электромагнетизме, хотя, конечно, в большей степени это касается теории относительности.
Специальная теория относительности была опубликована Альбертом Эйнштейном (1879–1955) в 1905 году, в ее основе лежит констатация факта, что скорость света в вакууме равна во всех инерциальных системах отсчета, то есть не зависит от их состояния покоя или постоянного прямолинейного движения по отношению к телу, на которое не действует никакая сила.
Согласно законам Ньютона, описание движения возможно только при указании на то, как тело перемещается во времени: для каждого пункта траектории устанавливается момент времени, в который в нем находится тело. При этом нужно принимать во внимание то, как наблюдатели в двух инерциальных системах отсчета сравнивают количественные показатели одного события. Отношения для сравнения параметров называется преобразованиями Галилея.
Некоторые физики уже доказали, что уравнения Максвелла, управляющие электромагнетизмом, не соответствуют преобразованиям Галилея. Для Эйнштейна все физические законы одинаковы для всех наблюдателей в одной системе инерциального отсчета, то есть невозможно отличить одну инерциальную систему от другой; также скорость света в вакууме постоянна и равна для всех инерциальных систем отсчета. Поэтому было необходимо найти другие уравнения преобразования между инерциальными системами, отличные от преобразований Галилея, согласно которым скорость света была бы всегда одинаковая.
ГЛАВА 4.
Взаимодействие между материей, электричеством и светом
Теоретические отголоски открытий Фарадея достигли ученых следующих поколений, таких как Максвелл и Эйнштейн. Они приняли эстафету из рук сандеманианца, чтобы сформулировать теории, с большей точностью описывающие реальный мир. Фарадей же продолжал исследовательские работы, направление которых переместилось на свет и его взаимодействие с электричеством и магнетизмом.
Фарадей стал почетным прихожанином сандеманианской церкви, а в Бирмингеме открылось первое производство динамо-машин. С 1833 года ученый начал проводить электрохимические опыты, которые напрямую могли связать материю с электричеством. Чуть позже к этой связи добавился свет, так как он является не чем иным, как волной. С другой стороны, Герц открыл волновые свойства электромагнетизма. Физики XIX века, стоявшие на механистических позициях, считали, что так же как волны распространяются по воде, электромагнитные волны должны распространяться через некую среду, эфир. В электромагнитной волне распространение происходит за счет изменений электрического и магнитного полей. Герц в 1888 году опубликовал результаты своих исследований, сделав вывод, что свет и электромагнитные волны относятся к одному явлению.